【离散拉普拉斯算子】cot算子和均匀算子的对比

关于cot算子和均匀算子的对比

【1】定义:

均匀算子: L i = 1 n ∑ 1 n v i − v i L_i =\frac{1}{n}\sum_1^nv_i-v_i Li=n11nvivi

其中,n是一邻域内点的个数, v i v_i vi

cot算子: K i = 1 2 A i ∑ j ∈ N i ( c o t α i , j + c o t β i , j ) ( v j − v i ) K_i = \frac{1}{2A_i}\sum_{j\in{N_i}}(cot\alpha_{i,j}+cot\beta_{i,j})(v_j-v_i) Ki=2Ai1jNi(cotαi,j+cotβi,j)(vjvi)

其中, α , β \alpha,\beta α,β ( v i , v j ) (v_i,vj) (vi,vj)边对应的相邻的两个三角形所对着的角。

【2】关于两个算子的一些分析

1、均匀算子相当于构造了一个当前顶点位置-重心的向量场,而优化的目标是,从几何的角度看,可以说平滑的目标是为了使得该向量场尽可能的小,如果将其看成热方程,可以视作,使得其散度尽可能的小。

2、cot算子在构造每个顶点的权重时时候是考虑了每条边的长度的,这点可以从cot函数的特点看出来随着角度的增大cot的值会变小,我们知道在一个三角形中”大边对大角“,因此,小角度对应的点权重会很高,而大角所对的(在一个三角形里)相对较长的边的权重会比较低。一个需要特别考虑的场景是
α + β > 180 \alpha+\beta>180 α+β>180时,此时的参数将会出现负数,此时非但不会起到平滑作用,甚至有可能会逆平滑。

因此,我们可以说,cot算子并不完全追求把顶点移动到一邻域的重心位置,它会在给那些相对更近的点更高的权重,而给相对较远的点较低的权重。

但,另一方面,它也在追求在考虑进角度和边长之后,使得局部尽可能的光滑,它的目标是使得平均曲率尽可能的小,而平均曲率达到尽可能小的曲面,被称为极小曲面。换言之,经过拉普拉斯平滑的曲面是一个极小曲面。

下面通过一个例子,来说明两个算子的区别
在这里插入图片描述

我们用两种方式来求顶点v的位置,假定 v 0 = ( − 1 , 0 ) , v 1 = ( 0 , − 1 ) , v 2 = ( 3 , 0 ) , v 3 = ( 0 , 1 ) , v 4 = ( − 1 , − 1 ) , v 5 = ( 3 , 1 ) v_0=(-1,0),v_1=(0,-1),v_2=(\sqrt3,0),v_3=(0,1),v_4=(-1,-1),v_5=(\sqrt3,1) v0=(1,0),v1=(0,1),v2=(3 ,0),v3=(0,1),v4=(1,1),v5=(3 ,1)

针对均匀算子: v = 1 5 ∑ i = 0 5 v i = ( 2 ∗ 3 − 1 5 , 0 ) v=\frac{1}{5}\sum_{i=0}^5v_i=(2*\frac{\sqrt3-1}{5},0) v=51i=05vi=(253 1,0)

而cot算子: v = ( 1.5 + 3 ) ∗ ( v 0 + 0.5 ∗ ( 1 + 3 ) ∗ ( v 1 + v 3 ) + 1 / 3 ∗ v 2 ) = ( 0 , 0 ) v=(1.5+\sqrt3)*(v_0+0.5*(1+\sqrt3)*(v_1+v_3)+1/\sqrt3*v_2)=(0,0) v=(1.5+3 )(v0+0.5(1+3 )(v1+v3)+1/3 v2)=(0,0)

可以看到,通过均匀算子将顶点v从原点向x轴正向移动了0.293,而在cot算子的平滑中, v 4 , v 5 v_4,v_5 v4,v5的权重为0,不参与计算,顶点v的位置经过平滑后未被移动。(因为对于一个平面来说,它的平均曲率就是为0的,不需要移动。)

这里有一个需要关注的点,均匀算子顶点的移动受距离较远的点影响很大,顶点的位置的移动也很大。

【3】两个算子各自的特性:

1、网格质量:cot算子受拓扑影响大,对质量比较差的网格比较敏感,而均匀算子对这方面的要求则没有那么苛刻。

角度的计算和点的连接度有关,一个点度太高,则角度一定会小,同样点太少角度一定会大,算子的计算结果可能差异会比较大。

均匀算子则不受度的影响。

2、边长变化(顶点分布)

均匀算子:追求把顶点移动到一邻域的中心,在补洞时,边界位置它的边长是固定的,所以,边界位置的均匀算子在计算顶点位置时,会受到边长的影响,而越远离边界的位置,则越不受边长因素的影响,也就是说,当补洞顶点过少或者过多时,会造成从边界到中心边长的一个明显的变化趋势,中心位置的边长的更长(顶点分布更稀疏)或者更短(顶点分布更密集),而不会在整个补洞区域内均匀分布。

cot算子:顶点位置只要满足使得其平均曲率最小即可,对于位置的要求相较均匀算子更加宽松。所以,这种影响在cot算子下会更小。

3、曲率变化

在补洞的顶点过多时,它的曲率变化将会尽可能的往中间传递,曲率在边界和中心位置的分布会出现非常大的不均匀。边界会比较平滑,而中心会凹或者凸起。所以,补洞点的数量的选择最好不要比现有密度多很多。cot算子在类似情况下,敏感性会有所降低。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值