如何定义距离?

如何定义距离?

最近在思考,如果我有一堆点,我该怎么构造他们的距离关系?

理论推导:

(1)范数的定义

范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度大小

解读:我可以构造所有点对之间的矢量,即从点a到b的矢量 a b ⃗ \vec{ab} ab ,我们可以给这些矢量定义范数。

(2)范数的三个条件

《1》非负性: a a ⃗ = 0 , a b ⃗ ≠ 0 ( a ≠ b ) \vec{aa}=0,\vec{ab}\ne0(a\ne b) aa =0ab =0(a=b)

《2》齐次性: a b ⃗ = b a ⃗ \vec{ab}=\vec{ba} ab =ba ,点b到a的距离,和b到a的距离。

《3》三角不等性: a b ⃗ + b c ⃗ ≤ a c ⃗ \vec{ab}+\vec{bc} \le \vec{ac} ab +bc ac

(3)度量空间

知识点一:向量空间,又叫线性空间。

知识点二:在线性空间(即向量空间)上定义范数,即称为赋范线性空间。

知识点三:赋范线性空间是度量空间。

至此,我们给这堆点成功定义了度量。即,我们可以计算他们之间的距离了。

实际操作:

(1)定义点

《1》定义每个点的数据结构,存储点的id,属性等信息。

《2》用vector,list,一张表等形式来存储一行/一个单位存储一个点。

(2)定义向量

《1》可以单独定义向量结构。

《2》可以用一个稀疏的邻接矩阵来存储任意两个点之间的向量关系。

(3)定义距离

《1》直接定义齐次的距离函数,即

∥ a b ∥ = f ( a , b ) = f ( b , a ) \parallel a b\parallel=f(a,b)=f(b,a) ab=f(a,b)=f(b,a)

《2》间接定义距离函数

我们先定义不齐次的距离函数:

∥ f ( a , b ) ≠ f ( b , a ) ∥ \parallel f(a,b) \ne f(b,a)\parallel f(a,b)=f(b,a)

然后我们定义齐次的距离函数:

∥ a b ∥ = F ( f ( a , b ) , f ( b , a ) ) \parallel a b\parallel=F(f(a,b),f(b,a)) ab=F(f(a,b),f(b,a))

比如: ∥ a b ∥ = m a x ( f ( a , b ) , f ( b , a ) ) \parallel a b\parallel=max(f(a,b),f(b,a)) ab=max(f(a,b),f(b,a)) ∥ a b ∥ = m i n ( f ( a , b ) , f ( b , a ) ) \parallel a b\parallel=min(f(a,b),f(b,a)) ab=min(f(a,b),f(b,a)) ∥ a b ∥ = f ( a , b ) + f ( b , a ) \parallel a b\parallel=f(a,b)+f(b,a) ab=f(a,b)+f(b,a)等。

**Notes:**非负通过给公式最后套一个绝对值就很容易满足,齐次性也通过上述两种方式完成了,接下来我们还需要满足三角不等性。如果我们最初给定的距离函数就能够满足三角不等性就不需要做下面这一步了。

(4)更新距离

对于直接相连的两个点:

我们通过对周围一定范围进行一定的最短距离搜索来更新当前两个点之间的距离,如果搜索出来的最短路径的距离小于距离函数定义的距离,就将当前两点的距离更新为最短路径的距离。

对于不直接相连的两个点:

(1)我们可以提供一个函数,每次直接从某个点出发向外进行最短路径的搜索方式来计算对应的距离。

(2)我们可以事先求好每个点之间的距离通过增量更新的方式维护一张巨大的表,每次通过查表的方式,检索两个点之间的距离。

上述两种方式的优劣是显然的,(1)方式空间开销小,但实际使用时时间长。(2)方式需要定期维护,空间开销大,实际使用时时间短。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值