方程组的两种理解方式(线性代数及其应用【2】)

(1) 关于解方程组的两种理解

给定一个方程组
{ 2 x − y = 0 − x + 2 y = 0 \left \{ \begin{array}{c} 2x-y=0 \\ -x+2y=0 \\ \end{array} \right. {2xy=0x+2y=0
写成矩阵形式就是:
[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] \begin{bmatrix}2 & -1 \\ -1 & 2\\ \end{bmatrix} \begin{bmatrix}x \\ y\\ \end{bmatrix} = \begin{bmatrix}0 \\ 3\\ \end{bmatrix} [2112][xy]=[03]
第一种:横着看(行空间)
即将每个方程看成一条线或者一个平面,则方程组的解可以理解为是方程组所有直接或者平面的交点。

l两个直线相交
如上图,我们可以看出,两条直线的交点是 ( 2 , 1 ) (2,1) 21。即方程的解是 ( 2 , 1 ) (2,1) (2,1)
第二种:竖着看(列空间)
忽略变量 x , y x,y x,y,可以将每一列看成一个向量,而等式左边的向量可以看成等式右边向量的组合,此时,再代入 x , y x,y x,y,可以将其看作每个向量的系数。此时,我们可以把方程组写成如下形式:
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2 \\ -1 \end{bmatrix} +y\begin{bmatrix} -1 \\ 2\\ \end{bmatrix} = \begin{bmatrix}0 \\ 3\\ \end{bmatrix} x[21]+y[12]=[03]
在这里插入图片描述
上图给出了三个列各自的向量 ( − 1 , 2 ) , ( 2 , − 1 ) , ( 0 , 3 ) (-1,2),(2,-1),(0,3) (1,2),(2,1),(0,3),但是,通过上图还无法看出具体两个向量的系数。
在这里插入图片描述
通过上图就能比较清晰的看出具体的系数了,其中向量 ( − 1 , 2 ) (-1,2) (1,2)的系数是2,而向量 ( 2 , − 1 ) (2,-1) (2,1)的系数是1,此时,他们俩组合成的向量正好是等式右边的向量 ( 0 , 3 ) (0,3) (0,3)
至此,我们给出了方程组解的两种理解方式。

(2)方程组无解时的两种方式的理解:

第一种:当两个平面平行,没有交点的时侯:
{ 2 x − y = 0 2 x − y = 1.5 \left \{ \begin{array}{c} 2x-y=0 \\ 2x-y=1.5 \\ \end{array} \right. {2xy=02xy=1.5
在这里插入图片描述
第二种:当两个向量共线,无法组合成其他向量的时候:
x [ 2 2 ] + y [ − 1 − 1 ] = [ 0 1.5 ] x\begin{bmatrix}2 \\ 2 \end{bmatrix} +y\begin{bmatrix} -1 \\ -1\\ \end{bmatrix} = \begin{bmatrix}0 \\ 1.5\\ \end{bmatrix} x[22]+y[11]=[01.5]
在这里插入图片描述
如上图,我们可以看出,用 ( 2 , 2 ) , ( − 1 , − 1 ) (2,2),(-1,-1) (2,2),(1,1)向量是没有办法组合出 ( 0 , 1.5 ) (0,1.5) (0,1.5)向量的。

(3)从列向量看方程的解

通过两个列向量的图,我们可以发现方程组是否有解,取决于方程左边的向量是否能组合成右边的向量。也就是说,列向量及其组合,决定了方程满足方程有解的右边向量的空间。只有当右边的向量落在左边列向量组成空间范围内时。此时,我们可以说方程组有解。而列向量及其线性组合所组成的空间,我们称其为解空间,也叫零空间。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值