sklearn normalizer

from sklearn.preprocessing import Normalizer
 
# 假设 X 是一个特征矩阵,每行代表一个样本,每列代表一个特征
X = [[1, 1], [1, -2]]
 
# 创建一个单位化转换器,默认情况下使用 l2 范数
normalizer = Normalizer(norm='l1')
 
# 单位化特征矩阵
X_normalized = normalizer.fit_transform(X)
 
# 输出单位化后的矩阵
print(X_normalized)

[[ 0.5         0.5       ]
 [ 0.33333333 -0.66666667]]

在这里插入图片描述

如果将上述norm设置为l2,结果为:

[[ 0.70710678  0.70710678]
 [ 0.4472136  -0.89442719]]

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值