from sklearn.preprocessing import Normalizer
# 假设 X 是一个特征矩阵,每行代表一个样本,每列代表一个特征
X = [[1, 1], [1, -2]]
# 创建一个单位化转换器,默认情况下使用 l2 范数
normalizer = Normalizer(norm='l1')
# 单位化特征矩阵
X_normalized = normalizer.fit_transform(X)
# 输出单位化后的矩阵
print(X_normalized)
[[ 0.5 0.5 ]
[ 0.33333333 -0.66666667]]
如果将上述norm设置为l2,结果为:
[[ 0.70710678 0.70710678]
[ 0.4472136 -0.89442719]]