sklearn随机森林

概述

集成学习(ensemble learning)是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型的建模结果。基本上所有的机器学习领域都可以看到集成学习的身影,在现实中集成学习也有相当大的作用,它可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。在现在的各种算法竞赛中,随机森林,梯度提升树(GBDT),Xgboost等集成算法的身影也随处可见,可见其效果之好,应用之广。

多个模型集成成为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。通常来说,有三类集成算法:装袋法(Bagging),提升法(Boosting)和stacking。

在这里插入图片描述

装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结果。装袋法的代表模型就是随机森林。

提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树。

sklearn集成算法模块ensemble

类的功能
ensemble.AdaBoostClassifierAdaBoost分类
ensemble.AdaBoostRegressor Adaboost回归
ensemble.BaggingClassifier装袋分类器
ensemble.BaggingRegressor装袋回归器
ensemble.ExtraTreesClassifierExtra-trees分类(超树,极端随机树)
ensemble.ExtraTreesRegressorExtra-trees回归
ensemble.GradientBoostingClassifier梯度提升分类
ensemble.GradientBoostingRegressor梯度提升回归
ensemble.IsolationForest隔离森林
ensemble.RandomForestClassifier随机森林分类
ensemble.RandomForestRegressor随机森林回归
ensemble.RandomTreesEmbedding完全随机树的集成
ensemble.VotingClassifier用于不合适估算器的软投票/多数规则分类器

和决策树效果对比

普通对比

from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split

wine = load_wine()
Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data, wine.target, test_size=0.3)

clf = DecisionTreeClassifier(random_state=0)
rfc = RandomForestClassifier(random_state=0)
clf = clf.fit(Xtrain, Ytrain)
rfc = rfc.fit(Xtrain, Ytrain)
score_c = clf.score(Xtest, Ytest)
score_r = rfc.score(Xtest, Ytest)

print("Single Tree:{}".format(score_c), "Random Forest:{}".format(score_r))

从下面结果可以看到随机森林效果比决策树效果好。
Single Tree:0.94 Random Forest:0.96

交叉验证1

#交叉验证:是数据集划分为n分,依次取每一份做测试集,每n-1份做训练集,多次训练模型以观测模型稳定性的方法

from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt

rfc = RandomForestClassifier(n_estimators=25)
rfc_s = cross_val_score(rfc, wine.data, wine.target, cv=10)

clf = DecisionTreeClassifier()
clf_s = cross_val_score(clf, wine.data, wine.target, cv=10)

plt.plot(range(1, 11), rfc_s, label="RandomForest")
plt.plot(range(1, 11), clf_s, label="Decision Tree")
plt.legend()
plt.show()

在这里插入图片描述

交叉验证2 (优化写法)

label = "RandomForest"
for model in [RandomForestClassifier(n_estimators=25), DecisionTreeClassifier()]:
    score = cross_val_score(model, wine.data, wine.target, cv=10)
    print("{}:".format(label)), print(score.mean())
    plt.plot(range(1, 11), score, label=label)
    plt.legend()
    label = "DecisionTree"

从下面数据可以看到随机森林效果更好
RandomForest: 0.96
DecisionTree: 0.85
在这里插入图片描述

多组交叉验证

rfc_l = []
clf_l = []

for i in range(10):
    rfc = RandomForestClassifier(n_estimators=25)
    rfc_s = cross_val_score(rfc, wine.data, wine.target, cv=10).mean()
    rfc_l.append(rfc_s)
    clf = DecisionTreeClassifier()
    clf_s = cross_val_score(clf, wine.data, wine.target, cv=10).mean()
    clf_l.append(clf_s)

plt.plot(range(1, 11), rfc_l, label="Random Forest")
plt.plot(range(1, 11), clf_l, label="Decision Tree")
plt.legend()
plt.show()

#是否有注意到,单个决策树的波动轨迹和随机森林一致?
#再次验证了我们之前提到的,单个决策树的准确率越高,随机森林的准确率也会越高

在这里插入图片描述

分析

n_estimators学习曲线

#####【TIME WARNING: 3-4min】#####

superpa = []
for i in range(200):
    rfc = RandomForestClassifier(n_estimators=i + 1, n_jobs=-1)
    rfc_s = cross_val_score(rfc, wine.data, wine.target, cv=10).mean()
    superpa.append(rfc_s)
best_x = superpa.index(max(superpa)) + 1
best_y =max(superpa)
plt.figure(figsize=[20, 5])
plt.plot(range(1, 201), superpa)
plt.plot([best_x], [best_y], 'ro')
plt.show()

print('best_x:', best_x, 'best_y:', best_y)

best_x: 32 best_y: 0.9944
在这里插入图片描述

为什么好

随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决原则来决定集成评估器的结果。在刚才的红酒例子中,我们建立了25棵树,对任何一个样本而言,平均或多数表决原则下,当且仅当有13棵以上的树判断错误的时候,随机森林才会判断错误。单独一棵决策树对红酒数据集的分类准确率在0.85上下浮动,假设一棵树判断错误的可能性为0.2(ε),那20棵树以上都判断错误的可能性是:其中,i是判断错误的次数,也是判错的树的数量,ε是一棵树判断错误的概率,(1-ε)是判断正确的概率,共判对25-i次。采用组合,是因为25棵树中,有任意i棵都判断错误。可见,判断错误的几率非常小,这让随机森林在红酒数据集上的表现远远好于单棵决策树
在这里插入图片描述

import numpy as np
from scipy.special import comb

np.array([comb(25, i) * (0.2 ** i) * ((1 - 0.2) ** (25 - i)) for i in range(13, 26)]).sum()

0.000369

bootstrap & oob_score(out of bag)

要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。
在一个含有n个样本的原始训练集中,我们进行随机采样,每次采样一个样本,并在抽取下一个样本之前将该样本放回原始训练集,也就是说下次采样时这个样本依然可能被采集到,这样采集n次,最终得到一个和原始训练集一样大的,n个样本组成的自助集。由于是随机采样,这样每次的自助集和原始数据集不同,和其他的采样集也是不同的。这样我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类器,我们的基分类器自然也就各不相同了。
bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False。
在这里插入图片描述

然而有放回抽样也会有自己的问题。由于是有放回,一些样本可能在同一个自助集中出现多次,而其他一些却可能被忽略,一般来说,自助集大约平均会包含63%的原始数据。因为每一个样本被抽到某个自助集中的概率为:
在这里插入图片描述

当n足够大时,这个概率收敛于1-(1/e),约等于0.632。因此,会有约37%的训练数据被浪费掉,没有参与建模,这些数据被称为袋外数据(out of bag data,简写为oob)。除了我们最开始就划分好的测试集之外,这些数据也可以被用来作为集成算法的测试集。也就是说,在使用随机森林时,我们可以不划分测试集和训练集,只需要用袋外数据来测试我们的模型即可。当然,这也不是绝对的,当n和n_estimators都不够大的时候,很可能就没有数据掉落在袋外,自然也就无法使用oob数据来测试模型了。
如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果:

#无需划分训练集和测试集
rfc = RandomForestClassifier(n_estimators=25, oob_score=True)  #默认为False
rfc = rfc.fit(wine.data, wine.target)

#重要属性oob_score_
rfc.oob_score_  #0.9719

常用方法

rfc = RandomForestClassifier(n_estimators=25)
rfc = rfc.fit(Xtrain, Ytrain)
rfc.score(Xtest, Ytest) # 1.0

rfc.feature_importances_ 
array([0.07894829, 0.03521424, 0.02684281, 0.02134859, 0.04093185,
       0.03675193, 0.15846376, 0.01313708, 0.04611036, 0.19136534,
       0.10014593, 0.09097958, 0.15976025])

rfc.apply(Xtest)  #apply返回每个测试样本所在的叶子节点的索引
array([[ 2,  7, 11, ...,  2,  5,  2],
       [11, 14, 19, ..., 12, 22, 20],
       [23,  5,  4, ...,  4,  6, 12],
       ...,
       [ 2,  7,  3, ...,  2,  5,  2],
       [ 2,  7,  5, ...,  2,  5,  2],
       [15,  7,  4, ...,  4, 13, 12]])

rfc.predict(Xtest)  #predict返回每个测试样本的分类/回归结果
rfc.predict_proba(Xtest)

Bagging的另一个必要条件

之前我们说过,在使用袋装法时要求基评估器要尽量独立。其实,袋装法还有另一个必要条件:基分类器的判断准确率至少要超过随机分类器,即时说,基分类器的判断准确率至少要超过50%。之前我们已经展示过随机森林的准确率公式,基于这个公式,我们画出了基分类器的误差率ε和随机森林的误差率之间的图像。大家可以自己运行一下这段代码,看看图像呈什么样的分布。

import numpy as np

x = np.linspace(0, 1, 20)

y = []
for epsilon in np.linspace(0, 1, 20):
    E = np.array([comb(25, i) * (epsilon ** i) * ((1 - epsilon) ** (25 - i)) for i in range(13, 26)]).sum()
    y.append(E)
plt.plot(x, y, "o-", label="when estimators are different")
plt.plot(x, x, "--", color="red", label="if all estimators are same")
plt.xlabel("individual estimator's error")
plt.ylabel("RandomForest's error")
plt.legend()
plt.show()

可以从图像上看出,当基分类器的误差率小于0.5,即准确率大于0.5时,集成的效果是比基分类器要好的。相反,当基分类器的误差率大于0.5,袋装的集成算法就失效了。所以在使用随机森林之前,一定要检查,用来组成随机森林的分类树们是否都有至少50%的预测正确率
在这里插入图片描述

回归

交叉验证

和决策树完全一致,除了多了参数n_estimators。

# from sklearn.datasets import load_boston  #一个标签是连续西变量的数据集
from sklearn.model_selection import cross_val_score  #导入交叉验证模块
from sklearn.ensemble import RandomForestRegressor  #导入随机森林回归系

# boston = load_boston()
import pandas as pd
import numpy as np

data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
boston = {
    'data': data,
    'target': target,
}
regressor = RandomForestRegressor(n_estimators=100, random_state=0)  #实例化
cross_val_score(regressor, boston['data'], boston['target'], cv=10
                , scoring="neg_mean_squared_error"  #如果不写scoring,回归评估默认是R平方
                )

返回十次交叉验证的结果,注意在这里,如果不填写scoring = “neg_mean_squared_error”,交叉验证默认的模型衡量指标是R平方,因此交叉验证的结果可能有正也可能有负。而如果写上scoring,则衡量标准是负MSE,交叉验证的结果只可能为负。

实例:用随机森林回归填补缺失值

在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中,在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。

准备数据

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# from sklearn.datasets import load_boston
from sklearn.impute import SimpleImputer  #填补缺失值的类
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score

# dataset = load_boston()
dataset = boston
dataset  #是一个字典

dataset['data'].shape  # 总共506 * 13=6578个数据
X_full, y_full = dataset['data'], dataset['target']
n_samples = X_full.shape[0]  #506
n_features = X_full.shape[1]  #13

#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失
rng = np.random.RandomState(0)  #设置一个随机种子,方便观察
missing_rate = 0.5
n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))  #3289
#np.floor向下取整,返回.0格式的浮点数

#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引
#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可以利用索引来为数据中的任意3289个位置赋空值
#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何
missing_features = rng.randint(0, n_features, n_missing_samples)  #randint(下限,上限,n)指在下限和上限之间取出n个整数
missing_features # 返回0 ~ 13 -1 之间的数 作为列号

missing_samples = rng.randint(0, n_samples, n_missing_samples) # 作为行号

#missing_samples = rng.choice(n_samples,n_missing_samples,replace=False)
#我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。
# 但如果我们需要的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数,
# 因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中!
#这里我们不采用np.random.choice,因为我们现在采样了3289个数据,远远超过我们的样本量506,使用np.random.choice会报错

X_missing = X_full.copy()
y_missing = y_full.copy()

赋予缺失值


X_missing[missing_samples, missing_features] = np.nan

X_missing = pd.DataFrame(X_missing)
#转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如pandas来得好用
X_missing.head()

#并没有对y_missing进行缺失值填补,原因是有监督学习,不能缺标签啊

在这里插入图片描述

均值填补

#使用均值进行填补
from sklearn.impute import SimpleImputer

imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')  #实例化
X_missing_mean = imp_mean.fit_transform(X_missing)  #特殊的接口fit_transform = 训练fit + 导出predict
X_missing_mean

在这里插入图片描述

0填补

#使用0进行填补
imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant", fill_value=0)  #constant指的是常数
X_missing_0 = imp_0.fit_transform(X_missing)
X_missing_0

随机森林填补

X_missing_reg = X_missing.copy()

#找出数据集中,缺失值从小到大排列的特征们(按列)的顺序,并且有了这些的索引
sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).values  #np.argsort()返回的是从小到大排序的顺序所对应的索引
sortindex

在这里插入图片描述

for i in sortindex:
    #构建我们的新特征矩阵(没有被选中去填充的特征 + 原始的标签)和新标签(被选中去填充的特征)
    df = X_missing_reg
    fillc = df.iloc[:, i]  #新标签
    df = pd.concat([df.iloc[:, df.columns != i], pd.DataFrame(y_full)], axis=1)  #新特征矩阵

    #在新特征矩阵中,对含有缺失值的列,进行0的填补
    df_0 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value=0).fit_transform(df)

    #找出我们的训练集和测试集
    Ytrain = fillc[fillc.notnull()]  # Ytrain是被选中要填充的特征中(现在是我们的标签),存在的那些值:非空值
    Ytest = fillc[fillc.isnull()]  #Ytest 是被选中要填充的特征中(现在是我们的标签),不存在的那些值:空值。注意我们需要的不是Ytest的值,需要的是Ytest所带的索引
    Xtrain = df_0[Ytrain.index, :]  #在新特征矩阵上,被选出来的要填充的特征的非空值所对应的记录
    Xtest = df_0[Ytest.index, :]  #在新特征矩阵上,被选出来的要填充的特征的空值所对应的记录

    #用随机森林回归来填补缺失值
    rfc = RandomForestRegressor(n_estimators=100)  #实例化
    rfc = rfc.fit(Xtrain, Ytrain)  #导入训练集进行训练
    Ypredict = rfc.predict(Xtest)  #用predict接口将Xtest导入,得到我们的预测结果(回归结果),就是我们要用来填补空值的这些值

    #将填补好的特征返回到我们的原始的特征矩阵中
    X_missing_reg.loc[X_missing_reg.iloc[:, i].isnull(), i] = Ypredict

#检验是否有空值
X_missing_reg.isnull().sum()

在这里插入图片描述

数据建模,取得MSE结果

#对所有数据进行建模,取得MSE结果

X = [X_full, X_missing_mean, X_missing_0, X_missing_reg]

mse = []
std = []
for x in X:
    estimator = RandomForestRegressor(random_state=0, n_estimators=100)  #实例化
    scores = cross_val_score(estimator, x, y_full, scoring='neg_mean_squared_error', cv=5).mean()
    mse.append(scores * -1)

[*zip(['Full data', 'Zero Imputation', 'Mean Imputation', 'Regressor Imputation'], mse)]

[('Full data', 21.571667100368845),
 ('Zero Imputation', 40.848037216676374),
 ('Mean Imputation', 49.626793201980185),
 ('Regressor Imputation', 19.230591872801394)]

生成条形图

x_labels = ['Full data',
            'Zero Imputation',
            'Mean Imputation',
            'Regressor Imputation']
colors = ['r', 'g', 'b', 'orange']

plt.figure(figsize=(12, 6))  #画出画布
ax = plt.subplot(111)  #添加子图
for i in np.arange(len(mse)):
    ax.barh(i, mse[i], color=colors[i], alpha=0.6, align='center')  #bar为条形图,barh为横向条形图,alpha表示条的粗度
ax.set_title('Imputation Techniques with Boston Data')
ax.set_xlim(left=np.min(mse) * 0.9,
            right=np.max(mse) * 1.1)  #设置x轴取值范围
ax.set_yticks(np.arange(len(mse)))
ax.set_xlabel('MSE')
ax.set_yticklabels(x_labels)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值