Pytorch-day08-模型进阶训练技巧

这篇博客介绍了PyTorch中模型训练的进阶技巧,包括如何自定义损失函数,如DiceLoss,以及动态调整学习率的方法,如使用torch.optim.lr_scheduler中的LambdaLR和MultiplicativeLR,以及自定义学习率调度器。文章还提供了代码实例,帮助读者理解并应用这些技巧。
摘要由CSDN通过智能技术生成

PyTorch 模型进阶训练技巧

  • 自定义损失函数 如 cross_entropy + L2正则化
  • 动态调整学习率 如每十次 *0.1

典型案例:loss上下震荡
在这里插入图片描述

1、自定义损失函数

  • 1、PyTorch已经提供了很多常用的损失函数,但是有些非通用的损失函数并未提供,比如:DiceLoss、HuberLoss…等

  • 2、模型如果出现loss震荡,在经过调整数据集或超参后,现象依然存在,非通用损失函数或自定义损失函数针对特定模型会有更好的效果
    比如:DiceLoss是医学影像分割常用的损失函数,定义如下:
    在这里插入图片描述

  • Dice系数, 是一种集合相似度度量函数,通常用于计算两个样本的相似度(值范围为 [0, 1]):

  • ∣X∩Y∣表示X和Y之间的交集,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闪闪发亮的小星星

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值