坐标系类型及其简介

本文介绍了平面直角坐标系、极坐标系、柱坐标系和球坐标系的基本概念和转换关系。平面直角坐标系通过有序实数对将点与方程联系起来,极坐标系利用极径和极角描述点的位置。坐标系的伸缩变换展示了图形的拉伸和压缩。同时,文章讨论了如何在不同坐标系间进行坐标转换,如直角坐标与极坐标的互换。最后,柱坐标系和球坐标系为空间中的点提供了另外两种表示方式,适用于描述复杂的三维形状和位置。
摘要由CSDN通过智能技术生成

一、平面直角坐标系

通过直接坐标系,平面上的点和坐标系(有序实数对)、曲线与方程建立了联系,从而实现了数与形结合。

1
如上图,每一个点对应坐标系上的一个有序实数对;方程 y = x 2 x ∈ [ − 2 , 2 ] y=x^2 \quad x\in[-2,2] y=x2x[2,2]对应上述图像。

平面直角坐标系中的伸缩变换

定义:设点P(x,y)是平面直角坐标系中的任意一点,在变换
ϕ : { x ′ = λ ⋅ x λ > 0 y ′ = μ ⋅ y μ > 0 (1) \phi: \left\{ \begin{aligned} &x'=\lambda \cdot x\quad \lambda>0\\ &y'=\mu \cdot y \quad \mu>0 \end{aligned} \right.\tag{1} ϕ:{x=λxλ>0y=μyμ>0(1)
的作用下,点P(x,y)对应到点P’=(x’,y’),称 ϕ \phi ϕ为平面直角系中的坐标伸缩变换。具体的,

  • μ > 1 或 λ > 1 \mu>1或\lambda>1 μ>1λ>1 表现为远离中心轴拉长;
  • μ = 1 或 λ = 1 \mu=1或\lambda=1 μ=1λ=1 保持不变;
  • μ < 1 或 λ < 1 \mu<1或\lambda<1 μ<1λ<1 表现为聚拢中心轴压缩。

二、极坐标系

如下图,在平面内任取一定点 O O O,叫做极点;自极点 O O O引一条射线 O x Ox Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向)。这样就建立了一个极坐标系。
1
M M M是平面内一点,极点 O O O与点 M M M的距离 ∣ O M ∣ |OM| OM叫做点 M M M极径,记为 ρ \rho ρ;以 O x Ox Ox为始边,射线OM为终边的角 x O M xOM xOM叫做 M M M极角,记为 θ \theta θ。有序实对 ( ρ , θ ) (\rho,\theta) (ρ,θ)叫做 M M M极坐标,记为 M ( ρ , θ ) M(\rho,\theta) M(ρ,θ)

极坐标和直角坐标之间的互化

2
由三角函数知识有以下转化公式:

  • 极坐标转直角坐标
    x = ρ c o s θ y = ρ s i n θ (2) x=\rho cos\theta\quad y=\rho sin\theta \tag{2} x=ρcosθy=ρsinθ(2)
  • 直角坐标转极坐标
    ρ 2 = x 2 + y 2 t a n θ = y x x ≠ 0 (3) \rho^2=x^2+y^2 \quad tan\theta=\frac{y}{x}\quad x\ne0\tag{3} ρ2=x2+y2tanθ=xyx=0(3)

三、简单的极坐标方程

3.1 圆
  • 半径为 a a a,圆心为 C ( a , 0 ) C(a,0) C(a,0)的圆,若极点在直角坐标原点,则极坐标系是: ρ = 2 a c o s θ \rho=2a cos\theta ρ=2acosθ,极点在直角坐标原点;
  • 半径为 a a a,圆心为 C ( 0 , a ) C(0,a) C(0,a)的圆,若极点在直角坐标原点,则极坐标系是: ρ = 2 a s i n θ \rho=2a sin\theta ρ=2asinθ
  • 半径为 a a a的圆,若极点在圆心C则极坐标系是: ρ = a \rho=a ρ=a

可见,极点与圆心的关系会影响极坐标方程的复杂度。

3.2 直线

极坐标方程的目标就是根据几何关系找到 ρ \rho ρ θ \theta θ的关系。在描述一条直线时,直角坐标系角度下,我们试图找到一个方程使得所有的 x x x y y y都满足一个关系,这个关系可以抽象为 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0;同样的,极坐标角度下,我们应该找到一个方程满足 f ( ρ , θ ) = 0 f(\rho,\theta)=0 f(ρ,θ)=0。在高中课本有一个这样的描述:“在平面直角坐标系下,平面曲线 C C C可以用方程 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0表示。曲线和方程满足如下关系:

  1. 曲线 C C C上点的坐标都是方程 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0上的解;
  2. 以方程 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0的解为坐标的点都在曲线 C C C上.

实现了数形的结合。不得不佩服笛卡尔,开创了解析几何。原本科学家的研究是建立在数的基础上,数之间的关系直接因为笛卡尔得到了释放。这里有一篇文章讲的挺清晰的:https://zhuanlan.zhihu.com/p/55877974

四、柱坐标系和球坐标系

4.1 柱坐标系(半极坐标系)

1
如上图,建立直角坐标系 O x y z Oxyz Oxyz.设 P P P是空间上一点。它在 O x y Oxy Oxy平面上的投影为 Q Q Q,用 ( ρ , θ ) ( ρ ≥ 0 , 0 ≤ θ < 2 π ) (\rho,\theta) \quad(\rho\ge0,0\le\theta<2\pi) (ρ,θ)(ρ0,0θ<2π)表示 Q Q Q在平面上的极坐标,这时点 P P P的位置可以用 ( ρ , θ , z ) ( z ∈ R ) (\rho,\theta,z) \quad (z\in R) (ρ,θ,z)(zR),这样我们建立了空间点与有序实数组 ( ρ , θ , z ) (\rho,\theta,z) (ρ,θ,z)之间的一种对应关系。把建立在上述对应关系的坐标系叫做柱坐标系,有序实数组 ( ρ , θ , z ) (\rho,\theta,z) (ρ,θ,z)叫做 P P P点的柱坐标,记作 P ( ρ , θ , z ) P(\rho,\theta,z) P(ρ,θ,z),其中 ρ ≥ 0 , 0 ≤ θ < 2 π , − ∞ < z < + ∞ \rho\ge0,0\le\theta<2\pi,-\infty< z <+\infty ρ0,0θ<2π,<z<+.

空间点 P P P直角坐标系 ( x , y , z ) (x,y,z) (x,y,z)与柱坐标系 ( ρ , θ , z ) (\rho,\theta,z) (ρ,θ,z)之间的变换关系为:
{ x = ρ c o s θ y = ρ s i n θ z = z \left\{ \begin{aligned} &x=\rho cos\theta \\ &y=\rho sin\theta \\ &z=z\\ \end{aligned} \right. x=ρcosθy=ρsinθz=z

4.2 球坐标系

在这里插入图片描述

如上图,建立空间直角坐标系 O x y z Oxyz Oxyz.设 P P P是空间上一点,连接 O P OP OP,记 ∣ O P ∣ = r |OP|=r OP=r, O P OP OP O z Oz Oz轴正向夹角为 ϕ \phi ϕ. 设P在 O x y Oxy Oxy平面上的射影为 Q Q Q O x Ox Ox轴按逆时针方向旋转刀 O Q OQ OQ时转过的最小正角为 θ \theta θ. 这样点 P P P的位置就可以用有序数组 ( r , ϕ , θ ) (r,\phi,\theta) (r,ϕ,θ)表示。这样空间上的点与有序数组 ( r , ϕ , θ ) (r,\phi,\theta) (r,ϕ,θ)建立了一种对应关系。把上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组 ( r , ϕ , θ ) (r,\phi,\theta) (r,ϕ,θ)叫做 P P P的球坐标,记作 P ( r , ϕ , θ ) P(r,\phi,\theta) P(r,ϕ,θ),其中 r ≥ 0 , 0 ≤ ϕ ≤ π , 0 ≤ θ ≤ 2 π r\ge0,0\le\phi\le\pi,0\le\theta\le 2\pi r00ϕπ0θ2π.测量中,把 θ \theta θ称为被测点的方位角, 90 − ϕ 90-\phi 90ϕ称为高低角。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值