y=sinx的概率分布推导

近期碰到这样一个小问题, 当 x x x 是在 [ 0 , 2 π ] [0, 2\pi] [0,2π] 上均匀分布时, 求 y = sin ⁡ ( x ) y=\sin(x) y=sin(x) 的分布?
然后发现百度出来的答案都是错的…

先上结论, 用matlab先看一下概率分布图, 代码如下:

for i = 1 : 100000
    a = unifrnd(0, 2 * pi);
    b(i) = sin(a);
end
cdfplot(b)

在这里插入图片描述

结果如图所示, 也就是说, sin ⁡ ( x ) \sin(x) sin(x)并不是如直觉所想, 在 [ − 1 , 1 ] [-1,1] [1,1]上均匀分布!
注意到由于 sin ⁡ x = − sin ⁡ ( x + π ) \sin x = -\sin(x + \pi) sinx=sin(x+π), 因此 sin ⁡ ( x ) 在 [ 0 , π ] \sin(x)在[0,\pi] sin(x)[0,π]上的分布与 sin ⁡ ( x ) 在 [ π , 2 π ] \sin(x)在[\pi,2\pi] sin(x)[π,2π]应该刚好对称。
那么我们进行推导, 当 x x x [ 0 , π ] [0, \pi] [0,π]上均匀分布时:
F Y ( y ) = P ( Y ≤ y ) = P ( sin ⁡ X ≤ y ) = P ( X ≤ sin ⁡ − 1 y ) + P ( X ≥ π − sin ⁡ − 1 y ) F_Y(y)=P(Y\le y)=P(\sin X\le y)=P(X\le\sin^{-1}y)+P(X\ge\pi-\sin^{-1}y) FY(y)=P(Yy)=P(sinXy)=P(Xsin1y)+P(Xπsin1y)
这里我们假定, arcsin ⁡ : [ − 1 ; 1 ] ↦ [ − π / 2 ; π / 2 ] \arcsin :[-1 ; 1] \mapsto[-\pi / 2 ; \pi / 2] arcsin:[1;1][π/2;π/2]
接着有:
P ( X ≤ sin ⁡ − 1 y ) = ∫ − ∞ sin ⁡ − 1 y f X ( x ) d x = 1 π ∫ − ∞ sin ⁡ − 1 y d x = sin ⁡ − 1 y π P(X\le\sin^{-1}y) =\int_{-\infty}^{\sin ^{-1} y} f_{X}(x) d x=\frac{1}{\pi}\int_{-\infty}^{\sin ^{-1} y} d x=\frac{\sin ^{-1} y}{\pi} P(Xsin1y)=sin1yfX(x)dx=π1sin1ydx=πsin1y
类似的,
P ( X ≥ π − sin ⁡ − 1 y ) = 1 − P ( X ≤ π − sin ⁡ − 1 y ) = sin ⁡ − 1 y π P(X\ge\pi-\sin^{-1}y)=1 - P(X\le \pi-\sin^{-1}y)=\frac{\sin ^{-1} y}{\pi} P(Xπsin1y)=1P(Xπsin1y)=πsin1y
因此 F Y ( y ) = 2 sin ⁡ − 1 y π F_Y(y) = \frac{2\sin ^{-1} y}{\pi} FY(y)=π2sin1y.
x x x [ π , 2 π ] [\pi, 2\pi] [π,2π]上均匀分布时:
F Y ( y ) = P ( Y ≤ y ) = P ( sin ⁡ X ≤ y ) = P ( π − sin ⁡ − 1 y ≤ X ≤ 2 π + sin ⁡ − 1 y ) F_Y(y)=P(Y\le y)=P(\sin X\le y)=P(\pi-\sin^{-1}y\le X\le2\pi+\sin^{-1}y) FY(y)=P(Yy)=P(sinXy)=P(πsin1yX2π+sin1y)
接着有:
P ( X ≤ 2 π + sin ⁡ − 1 y ) = ∫ − ∞ 2 π + sin ⁡ − 1 y f X ( x ) d x = 1 π ∫ − ∞ 2 π + sin ⁡ − 1 y d x = π + sin ⁡ − 1 y π P(X\le2\pi+\sin^{-1}y) =\int_{-\infty}^{2\pi + \sin ^{-1} y} f_{X}(x) d x=\frac{1}{\pi}\int_{-\infty}^{2\pi + \sin ^{-1} y} d x=\frac{\pi + \sin ^{-1} y}{\pi} P(X2π+sin1y)=2π+sin1yfX(x)dx=π12π+sin1ydx=ππ+sin1y
类似的,
P ( X ≤ π − sin ⁡ − 1 y ) = − sin ⁡ − 1 y π P(X\le\pi-\sin^{-1}y)=\frac{-\sin ^{-1} y}{\pi} P(Xπsin1y)=πsin1y,
因此 F Y ( y ) = π + 2 sin ⁡ − 1 y π F_Y(y) = \frac{\pi+2\sin ^{-1} y}{\pi} FY(y)=ππ+2sin1y.

综上,
F Y ( y ) = { sin ⁡ − 1 y π + 1 2 y ≥ 0 π + 2 sin ⁡ − 1 y 2 π y < 0 . F_Y(y)= \begin{cases} \frac{\sin ^{-1}y}{\pi} + \frac{1}{2}&y\ge0 \\ \frac{\pi+2\sin ^{-1} y}{2\pi} & y<0\end{cases}. FY(y)={πsin1y+212ππ+2sin1yy0y<0.

用matlab程序验证:

y = -1 : 0.001: 1;
for i = 1 : length(y)
    if y(i) >= 0
        z(i) = asin(y(i))/pi + 0.5;
    else
        z(i) = (pi + 2 * asin(y(i))) / 2 / pi;
    end
end
plot(y,z)

最后两条线完美重合, 证明正确!
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B417科研笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值