Machine Learning (3) Classification and Representation

1. Classification and Representation [分类和表达]:

1.1 Classification [分类]:

1.1.1 为了达到分类的目的,一种方法是使用线性回归,并将所有大于某值的预测映射为1,而所有预测小于该值的都映射为0。然而,这种方法并不总是适用的,因为分类问题实际上并不能用一个线性函数来描述。

1.1.2 事实上绝大多数分类问题都不应该使用线性函数进行描述,即使部分线性函数可以对分类问题进行正确描述,这只是极少数情况。一个非常有代表性的例子是,当训练样本y值全是0和1时,用线性函数预测出的结果并不是只有0和1,这显然是与事实不符的。

1.1.3 对于二值问题中的0和1项有时也被称为负项和正项。

1.2 Hypothesis Representation [假设函数的表示法]:

1.2.1 针对前述问题,线性函数中会出现大于二值问题范围的情况,这样将预测函数变为只在二值问题范围中的函数会更加合理。于是,将θTx放入某the Logistic Function [逻辑函数]中会是一个更合理的处理方式,在这里我们选用了“the Sigmoid Function”[S形函数](且相应S形函数图像如下右):

                                                         

1.2.2 关于二值问题,不如假设两个值就用0和1来代指,如下公式是用条件概率的方式对这个二值问题进行了描述。其含义是,对于参数theta为θ时,当观测数据为x时,y为1的概率是多少。(条件概率在工程领域的应用非常广泛,例如我在SLAM问题以及随后我将更新的关于Robotics控制等的问题中都被广泛应用。)

1.3 Decision Boundary [决策边界]:

1.3.1 为了得到离散的0和1分类,可以将假设函数的输出转换为如上二形式(可以理解为为假设函数设置一个阈值,这里我们就简单的使用0.5来方便讨论了)。由上一式可见,当假设函数大于0.5时,即逻辑函数g(z)大于0.5时,相应的z值是大于0的。而相应z值是一个θ转置与x的矩阵乘积。

1.3.2 关于由g(z)z的变化,即正负函数性的判断可参照如下过程:

而对于相应z是由θTx决定的,于是将上一进一步推导得到上二。

1.3.3 在有了θx的关系之后,回到最根本的对y的判断上,于是得到θTxy之间的关系如上三。

1.3.4 这时假设x[x0, x1, x2]T组成,于是得到一个θ1*x1 +θ2*x2 > x0的关系,如果在x1Ox2坐标系中画出可以得到相应的决策边界

1.3.5 注意,如上的决策边界是由相应的θ决定的,即当θ确定了之后,相应的决策边界就确定了。而上一节中的下降梯度算法和正规函数解决的目标是找到相应的θ,关于这个问题会在后续讨论中给出方法。

2. Logistic Regression Model [逻辑回归模型]:

2.1.1 在逻辑回归问题中,很难直接使用线性回归模型中的代价函数,因为如在上一点中提到的逻辑函数的复杂形式,相应的代价函数的输出会是上下波动的,这会导致大量的局部最优值,由此这种函数不是一个凸函数。

2.1.2 为了解决4.1中提到的问题,对于分类问题(这里我们以二值分类为例),将逻辑回归的成本函数设定为如下形式:

2.1.3 当y = 1时,我们将得到如下左图像,其中纵轴是J(θ),横轴是hθ(x)。类似地,当y = 0时,我们会得到如下中的函数图像。相应数学表达如下三。

2.1.4 对于如上叙述可以这么理解,y的值是样本的真实值,如前所述,当观测到x时,经过假设函数h(x)得到的预测值,如果与真实的y值相差很远,则所谓的成本函数J(θ)应该很大,如果h(x)的预测值与真实值完全相同,相应的成本函数J(θ)的值应该为0。(从前述关于成本函数cost function的讨论,可以被推广到很多基于概率的问题上。)

2.2 Simplified Cost Function and Gradient Descent [简化的成本函数和梯度下降]:

2.2.1 可以将之前的成本函数组整合成一个函数:

如果将成本函数展开写成完整形态则会如下形态:

将其矢量化后:

2.2.2 梯度下降的形式与线性模型类似,如下图一。将其展开后,得到的结果与线性模型相应结果惊人的相似,如下图中。注意,相应的θ也是全部同步更新。相应的矢量化表达如下图三。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值