realsenseD435读取彩色图和深度图(python)

Github:https://github.com/IntelRealSense/librealsense/blob/master/wrappers/python/examples/opencv_viewer_example.py#L11

## License: Apache 2.0. See LICENSE file in root directory.
## Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved.

###############################################
##      Open CV and Numpy integration        ##
###############################################

import pyrealsense2 as rs
import numpy as np
import cv2

# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()

config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)

# Start streaming
pipeline.start(config)

try:
    while True:
        # Wait for a coherent pair of frames: depth and color
        frames = pipeline.wait_for_frames()
        depth_frame = frames.get_depth_frame()
        color_frame = frames.get_color_frame()
        if not depth_frame or not color_frame:
            continue

        # Convert images to numpy arrays
        depth_image = np.asanyarray(depth_frame.get_data())
        color_image = np.asanyarray(color_frame.get_data())

        # Apply colormap on depth image (image must be converted to 8-bit per pixel first)
        depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.03), cv2.COLORMAP_JET)

        depth_colormap_dim = depth_colormap.shape
        color_colormap_dim = color_image.shape

        # If depth and color resolutions are different, resize color image to match depth image for display
        if depth_colormap_dim != color_colormap_dim:
            resized_color_image = cv2.resize(color_image, dsize=(depth_colormap_dim[1], depth_colormap_dim[0]), interpolation=cv2.INTER_AREA)
            images = np.hstack((resized_color_image, depth_colormap))
        else:
            images = np.hstack((color_image, depth_colormap))

        # Show images
        cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE)
        cv2.imshow('RealSense', images)
        cv2.waitKey(1)

finally:
    # Stop streaming
    pipeline.stop()
### 回答1: vs调用d435i深度相机是指使用Visual Studio(VS)编程环境来调用、控制和处理Intel RealSense D435i深度相机。D435i相机是一款具备深度测量和像采集功能的相机设备。通过在VS中编写相应的代码,我们可以利用D435i相机的功能来实现各种应用。 在调用D435i深度相机之前,我们需要在VS中创建一个项目,并将相机的SDK(软件开发工具包)导入项目中。然后,我们可以使用相机SDK提供的API(应用程序接口)来与相机进行交互。 首先,我们可以使用API来初始化相机连接,确保与D435i相机建立正确的通信。接下来,我们可以设置相机的各种参数,如分辨率、帧率、深度范围等。通过这些参数设置,我们可以根据具体应用的需求来调整相机的工作方式。 一旦相机连接和参数设置完成,我们就可以开始从D435i相机中获取深度图像和彩色像数据。这些像数据可以用于实现各种功能,如实时的人体姿势识别、物体跟踪、三维重建等。 除了像数据外,D435i相机还可以提供其他传感器数据,如加速度计、陀螺仪等。通过获取这些传感器数据,我们可以实现更为复杂的应用,比如室内导航、手势控制等。 最后,在获取相机数据后,我们可以在VS中进行数据处理和分析。利用计算机视觉和深度学习算法,我们可以对像数据进行识别、分析和处理,从而实现各种应用的需求。 总之,通过VS调用D435i深度相机,我们可以实现各种具有深度感知功能的应用。这样的应用可以广泛应用于机器人、虚拟现实、增强现实、自动驾驶等领域,为人们提供更加智能、更加沉浸式的用户体验。 ### 回答2: D435i是一款由英特尔开发的深度相机,它可以通过USB接口与计算机连接。使用D435i相机的话,我们可以通过编程语言(如C++,Python等)调用Intel RealSense SDK来获取深度数据和像,从而进行各种应用开发。 首先,我们需要安装D435i相机的驱动程序和RealSense SDK。在安装完成后,我们可以打开一个集成开发环境(如Visual Studio)并创建一个新的项目。接下来,我们需要在项目中添加RealSense SDK的库文件和头文件。 在代码编写的过程中,我们可以使用RealSense SDK的函数来获取深度图像、彩色像以及其他传感器的数据。例如,我们可以使用 `rs2::pipeline` 类创建一个实例,并打开相机设备。然后,我们可以循环读取帧数据,并使用 `rs2::frameset` 来获取深度帧的数据。对于每个深度帧,在获取深度像素的同时,可以获得与之相关联的几何信息(例如,像素的三维坐标)。同时,我们也可以获取彩色像帧并进行相应的处理和分析。 另外,D435i相机还具有其他传感器,例如加速度计和陀螺仪。我们可以使用RealSense SDK来获取这些传感器的数据,并根据应用需求进行分析和利用。 总之,通过对D435i深度相机的调用,我们可以使用RealSense SDK获取深度数据和像,实现各种应用开发,例如三维重建、虚拟现实、机器人导航等。这款相机的高质量传感器和强大的开发工具使其成为开发者喜爱的设备之一。 ### 回答3: vs调用d435i深度相机是指在Visual Studio(以下简称VS)开发环境下,通过编程调用Intel RealSense D435i深度相机进行像采集和深度信息获取的过程。 在调用D435i深度相机之前,我们需要先安装相应的驱动程序和软件开发包(SDK)。然后在VS中新建一个项目,并添加相应的引用,将相关的库文件和头文件导入到项目中。 接下来就可以在程序中调用D435i深度相机进行像采集和深度信息获取了。首先,我们需要初始化相机并设置相关参数,比如采集分辨率、帧率等。然后通过启动相机,开始实时获取像和深度数据。 在获取像和深度数据之后,我们可以对其进行一系列的处理和分析。比如可以对像进行颜色校正、像增强等操作;对深度数据进行滤波、计算距离等操作。通过这些操作,可以实现各种应用,比如三维重建、手势识别等。 在使用完D435i深度相机后,我们需要释放相机资源,并做一些清理工作,比如关闭相机、释放内存等等。 总之,通过VS调用D435i深度相机可以方便地实现对深度信息的获取和处理。这为开发各种基于深度相机的应用提供了良好的开发环境和工具支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾系桉宁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值