多重同步压缩变换multisynchrosqueezing transform(MSST)在信号处理中的应用

今天我们主要讲一下多重同步压缩变换multisynchrosqueezing transform(MSST)在信号处理中的应用.

原文:Yu G , Wang Z , Zhao P . Multisynchrosqueezing Transform[J]. Industrial Electronics, IEEE Transactions on, 2018.

多重同步压缩变换 (MSST)通过迭代重分配技术对信号的时频分量能量分布进行多次同步压缩变换SST以提高非稳态信号时频分布中特征信号分量的能量集中度。

先简要看一下SST原理

MSST是在SST基础上通过多次迭代使得信号时频分量的能量在其瞬时频率附近得到进一步压缩,以获得能量高度集中的时频分布。多重同步压缩变换表达式为:

通过多次迭代,由式(4)表述的瞬时频率将会越来越接近信号的真实瞬时频率,从而获得强时变信号的高分辨率时频谱图。

首先,先导入一个实际的机械振动信号

load('vib_data1.mat')
fs = 12000; %采样频率
N = 1200;      % 采样点数
time = (1:N)/fs;    
多重同步压缩变换(Multiple Synchronous Subband Transform, MSST)是一种用于信号处理和图像编码的技术,它将信号分解成多个独立的频带,并对每个频带进行并行处理,提高数据压缩效率。然而,提供具体的MSST实现代码通常超出了我的能力范围,因为这涉及到复杂的数据结构、算法以及可能需要特定库的支持。 MSST的实现一般包括以下几个步骤: 1. **子带划分**:首先,信号通过快速傅立叶变换(FFT)或其他滤波器银行转换到频域,然后按照频率划分成多个子带。 2. **同步采样**:在每个子带上采用同步点进行采样,确保相邻子带之间有相同的采样点,便于后续的处理和编码。 3. **量化与编码**:对子带信号进行量化,将其转换为离散值,然后应用熵编码(如霍夫曼编码或算术编码)压缩数据。 以下是一个简化的伪代码示例: ```python def msst(signal, num_subbands): # Step 1: FFT and subband decomposition fft_result = np.fft.fft(signal) subbands = divide_into_subbands(fft_result, num_subbands) # Step 2: Synchronous sampling synced_subbands = apply_synchro_sample(subbands) # Step 3: Quantization and entropy encoding quantized_subbands = quantize(synced_subbands) compressed_data = encode(quantized_subbands) return compressed_data # 辅助函数 def divide_into_subbands(fft_result, num_subbands): pass def apply_synchro_sample(subbands): pass def quantize(subbands): pass def encode(subbands): pass ``` 请注意,这只是一个简化版本,实际的MSST实现会更复杂,涉及到更多细节和优化,例如窗口函数选择、自适应量化等。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥廷根数学学派

码字不易,且行且珍惜

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值