前面我们主要讲了小波分析在机械振动信号或者其他时间序列中的应用
基于小波包特征提取和随机森林的CWRU轴承数据集故障识别 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/556172942
基于小波区间相关(Interval-Dependent)的信号降噪方法 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/558132966
多元小波降噪方法 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/558075972
基于小波分析和深度学习的时间序列分类并可视化相关特征 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/557922791
小波相干分析在时间序列分析中的应用 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/557902264
小波降噪基础-python版本 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/552373046
使用最大离散重叠小波变换MODWT和支持向量回归 SVR的金融时间序列预测 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/552759437
基于小波变换的稳健的单导联心电图 (ECG) 描绘 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/553061958
基于小波变换和机器学习的地震信号处理和识别 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/553158878
基于小波分析和机器学习的时间序列分析与识别 - 哥廷根数学学派的文章 - 知乎 https://zhuanlan.zhihu.com/p/554097033
本文我们主要谈下小波在电力系统暂态信号处理中的应用,先不涉及任何数学公式,避免劝退。
20 世纪 90 年代以来,小波分析理论及其工程应用逐渐受到各国数学家和工程技术人员的高度重视。 小波分析被认为是对傅里叶分析的重大突破,与短时傅里叶变换相比,小波变换提供了一个可调的时间频率窗。 当观察高频信号时,时窗自动变窄;当研究低频信号时,时窗自动变宽,即具有变焦距的特点。 小波变换的另一特征是能表征信号的奇异性,即信号在不同尺度上小波变换的模极大值或Lipschitz指数可以表示信号的突变特征。 小波变换应用于电力系统的研究最近几年得到了很好的发展,更在分析和处理暂态信号领域显示了优越性和广阔的应用前景,主要应用领域包括电力信号去噪、数据压缩、电力设备故障诊断、电能质量扰动信号分析、继电保护、故障定位等。
信号去噪
电力信号的理想状态只包含工频 50Hz信号,但在实际情况中,一般是包含工频基波分量、 各次谐波分量、 故