近年来随着城镇化的发展,用电负荷的不断增加,配电网的建设与改造也在不断进行。从城市景观和线路安全角度考虑,电缆线路的应用更加普遍和广泛。与架空线路相比,电缆输电线对地电容更大。我国规定,在35kV及以下的配电系统采用小电流接地方式。当单相接地的电容电流超过20A时,应采用经消弧线圈接地方式。考虑到电缆线路的广泛应用,通过消弧线圈接地的谐振接地系统逐渐成为我国配电网的主要方式。发生单相接地故障时,允许系统、继续运行1到2小时,而不必立即跳闸。这也是采用小电流接地系统运行的主要优点,但是系统在长时间运行下容易造成多相短路,因此发生故障后应该尽快找出故障线路并将其切除[1]。
选线问题一直是研究的难点,其中基于暂态量的选线方法克服了稳态算法灵敏度低的确点,且在故障电流中暂态量十分丰富。但小波变换必须事先确定基函数,并且基函数的选取影响着分解的效果,所以很难事先找到一个合适的基函数,使小波变换能分解出最优的效果[2]。因此本文选择了基于暂态量算法且对信号分析精确的小波分析法。
1小波变换
1.1小波基本理论
小波分析发挥其时频域局部化的功能,能准确的处理其从故障暂态信号里提取的故障信息,
通过多分辨率分析实现小波变换,从各种频率区间获得所需要信息,为小电流接地系统故障选线提供了理论基础以及数学算法依据[3]。本文通过比较各线路故障暂态特征量经合适的小波变换后的小波变换模极大值大小和极性来实现选线。
设ψ(t) ∈L2(R) (平方可积空间),其傅里叶变换为Ψ(ω) ,当Ψ(ω) 满足容许条件:
给定任意原始信号S⊂Vj⊕Wj ,可将原始信号用层层二分解来表示,分解 S 一部分为细节部分 dj,另一部分为逼近部分 aj,再继续将 aj继续分解为 aj+1 和 dj+1,然后依次类推,通过此方式进行反复分解,其细节部分和逼近部分就可以在各个尺度上显示处来,多分辨率分析只是对低频部分进行下一步的分解,其分解过程如图所示:
图1 多分辨率4层分解
如图所示,逐步完成多分辨率分解的过程就是 Mallat算法,该算法的本质就是通过滤波器对信号进行处理。在分解处理时,先将信号通过高通滤波器后得到细节部分,然后再将信号经过低通滤波器得到逼近部分。若有函数f(x)∈L2(∣R),那么f(x)
可以进行小波分解,若gj(x)∈Wj⊂Vj-1,f(x)∈Vj⊂Wj-1
,则存在fj-1(x)
= fj(x)
+ gj(x)
。
1.3奇异性检测原理与小波函数选择
小电流接地系统发生单相接地故障时,零序电流的数值急剧变化, 对于突变的信号,小波变换能敏锐的捕捉到信号剧烈变化的特征信息,将信号中的奇异点投影在小波域中,经分析变换得小波变换系数的模极值点。就暂态故障分析而言,故障发生的时间点处就是该极大值出现的时间。其中,信号奇异点的位置可以通过分析细节部分dj的模极大值来描述。
根据文献[7]中所提出的五条选线原则,对小波函数的正交性、消失矩阶数、正则性、支撑长度和对称性五种属性进行比较。初步选择了Coiflet4、db10和Harr三种小波。在信号突变检测能力中选择消失矩阶数较高越有利于奇异性检测的原则,正交性越强越有利于充分利用数据和支撑长度越长约有利于频域分析的原则下,选择了Coiflet4进行后续实验。
表1 三种小波比较图
消失矩阶数 | 正交性 | 支撑长度 | |
Coiflet4 | 8 | 有 | 23 |
db10 | 10 | 有 | 19 |
Harr | 1 | 有 | 1 |
1.2模最大值矩阵
对各条线路零序暂态电流用Coiflet4小波进行5层分解,利用小波的奇异性检测原理找出各个细分尺度对应的模极大值。定义一个模极大值矩阵:
在模极大值矩阵中,行i对应于线路编号,列j对应小波分解的尺度。并根据下式计算各列元素的平方和,选择平方和中最大尺度作为比较尺度。
maxi=1n mij2j=1,2,3,4,5
2判据与算例仿真
2.1选线步骤
①采样中性点零序电压并分析其波形,确定故障时刻(零序电压发生突变的时间就是故障时刻)。
②采样各条线路暂态零序电流,并使用Coiflet4对其进行5层小波分解。
③选择Mij中各列向量的元素平方和最大所对应的尺度为选线比较尺度,即选择“信息暂态突变特征最明显的尺度”。
④确定故障线路。
2.2仿真模型及分析
按照图2,在MATLAB/Simulink软件中利用simpower system工具箱建立了中性点经消弧线圈接地系统的仿真模型。建立一个电压等级为10kV的配电系统。其中,在中性点不接地系统中,当单相接地的电容电流较大时,在接地处还可能出现所谓间隙电弧,引起相对地的过电压。因此,在10~20kV系统中,当单相接地的电容电流超过20A时,应采用经消弧线圈接地方式。弧线圈的补偿程度用过补偿度 P 表示,即:P =(IL-IC)/IC实际采用的过补偿度多为 5%~10%,这种情况下,补偿后的电流,数值较小,但一些选线原理会失效。
如果要使接地点的电流近似为0(即完全补偿),应满足:
ωL=1/3 ωC∑
根据表2的线路参数,可以计算得
C∑=9.38×10-7F
当取过补偿度为10%时,经计算消弧线圈的电感L=0.83H,取消弧线圈中的R=2Ω。
图2 经消弧线圈接地的网络图
本仿真模型利用四条电缆线路模拟,线路参数如表2所示,(其中小电流接地系统一般运用在输电长度在二十千米以下的系统当中)且在每一条线路由零序电流零序电压采集测量装置,使得结论更加明了。系统参数设置如下:
表2 线路参数
线路 | 线路类型 | 电阻(Ω/km) | 电感(H/km) | 电容(F/km) | 长度(km) | |||
正序 | 零序 | 正序 | 零序 | 正序 | 零序 | |||
L1 | 电缆线 | 0.09 | 0.14 | 0.28e-3 | 0.83e-3 | 0.27e-6 | 0.08e-6 | 5 |
L2 | 电缆线 | 0.09 | 0.14 | 0.28e-3 | 0.83e-3 | 0.27e-6 | 0.08e-6 | 10 |
L3 | 电缆线 | 0.09 | 0.14 | 0.28e-3 | 0.83e-3 | 0.27e-6 | 0.08e-6 | 15 |
L4 | 电缆线 | 0.09 | 0.14 | 0.28e-3 | 0.83e-3 | 0.27e-6 | 0.08e-6 | 20 |
四条线路的负载均设为10MW 。
图3经消弧线圈接地接地的仿真模型
图4 中性点经消弧线圈接地系统故障时三相电压波形
基础算例:
线路4在10km处0.02s时,A相发生单相接地故障,接地故障为100Ω
图5 4条线路的零序电流
图6 L1线路Coiflet4的5层尺度小波分解图
图7 L2线路Coiflet4的5层尺度小波分解图
图8 L3线路Coiflet4的5层尺度小波分解图
图9 L4线路Coiflet4的5层尺度小波分解图
图10 各尺度的模平方和值
根据判据,选择第四尺度中作为判据。在模极大值矩阵中,线路4的值最大,与实际故障相符合。
其他算例:
表3 选线结果
线路L4故障发生在不同时刻(合闸角不同) | |||||||
故障时间 | 选择尺度 | 选择尺度下各线路模极大值 | 所选线路 | 选线结果 | |||
L1 | L2 | L3 | L4 | ||||
0.025s | 3 | 0.7200 | -2.0056 | 4.5253 | 6.0230 | L4 | 正确 |
0.028s | 4 | 0.2818 | -0.6051 | -1.1039 | 1.9795 | L4 | 正确 |
0.030s | 3 | 0.1963 | -0.4127 | -1.272 | 1.4223 | L4 | 正确 |
0.035s | 3 | 0.7200 | 2.0056 | -4.5253 | -6.0230 | L4 | 正确 |
线路L4经不同的接地电阻发生故障(接地电阻不同) | |||||||
接地电阻 | 选择尺度 | L1 | L2 | L3 | L4 | 所选线路 | 选线结果 |
500Ω | 3 | 0.0636 | 0.1700 | 0.4624 | -0.5294 | L4 | 正确 |
1000Ω | 3 | 0.0343 | 0.0970 | 0.2559 | -0.2939 | L4 | 正确 |
1500Ω | 3 | 0.0239 | 0.0678 | 0.1768 | 0.2033 | L4 | 正确 |
2000Ω | 3 | 0.0184 | 0.0521 | 0.1351 | -0.1553 | L4 | 正确 |
线路L4故障发生在不同位置(距离负载终端不同) | |||||||
故障长度 | 选择尺度 | L1 | L2 | L3 | L4 | 所选线路 | 选线结果 |
1km | 4 | 0.2083 | -0.4452 | -0.8018 | 1.4485 | L4 | 正确 |
5km | 4 | -0.238 | -0.5098 | -0.9314 | 1.6713 | L4 | 正确 |
15km | 4 | 0.2167 | -0.4759 | -0.8368 | 1.5206 | L4 | 正确 |
20km | 3 | 0.2734 | -0.8507 | 1.0890 | 1.5792 | L4 | 正确 |
3 结语
小波选线的方法充分利用了暂态故障电流的特征进行选线,根据该选线原理本文建立了仿真模型,仿真中性点经消弧线圈接地系统在不同故障发生时刻、不同接地电阻、不同故障长度情况,通过小波变换得出各条出线暂态零序电流小波变换的模极大值并比较其极性,小波分析法均能准确的选出故障线路。本文认为小波分析法在电力系统中有较好的应用前景,值得更进一步的对其进行研究。
参考文献
[1]王俊杰. 小电流接地选线装置的测试与仿真研究[D].南昌大学,2016.
[2]张驰.小电流单相接地选线综述[J].信息技术与信息化,2021(02):138-140.
[3] 平勇陈,小电流接地系统单相接地故障选线方法的研究[J].华东电力’2014, 42(7):1410-1414.
[4] 陈国青,杜景琦,梁仕斌,等.基于小波分析及振动信号灰度矩的水电机组振动区建立方法研究[J]科学技术与工程,2016,16(35):215-219.
[5] 谢世康.基于小波分析的小电流接地系统单相接地故障选线研究[D].长春:长春工业大学,2017.
[6] 王建元,张峥.基于注入信号与小波能量的小电流接地故障选线研究[J].电测与仪表, 2018,55(5): 28-32
[7]龚静. 小波分析在配电网单相接地故障选线中的应用[M]. 中国电力出版社, 2012.