第四章跳跃随机过程1

1泊松过程

1.1定义

满足以下三个条件:

  1. N 0 = 0 N_0=0 N0=0
  2. P ( N t − N s = n ) = ( λ ( t − s ) ) n n ! e − λ ( t − s ) P(N_t-N_s=n)=\frac{(\lambda (t-s))^n}{n!}e^{-\lambda (t-s)} P(NtNs=n)=n!(λ(ts))neλ(ts)
  3. 对任意的 t 1 < t 2 < . . . < t n , t_1<t_2<...<t_n, t1<t2<...<tn, N t 2 − N t 1 , N t 3 − N t 2 , . . . , N t n − N t n − 1 , N_{t_2}-N_{t_1},N_{t_3}-N_{t_2},...,N_{t_n}-N_{t_{n-1}}, Nt2Nt1,Nt3Nt2,...,NtnNtn1,是相互独立的随机变量

1.2一维分布与数字特征

  • ∀ t > 0 , N t \forall t>0,N_t t>0,Nt服从参数为 λ t \lambda t λt的泊松分布
  • m N ( t ) = λ t , D N ( t ) = λ t , R N ( s , t ) = λ 2 s t + λ m i n ( s , t ) m_N(t)=\lambda t,D_N(t)=\lambda t,R_N(s,t)=\lambda^2st+\lambda min(s,t) mN(t)=λt,DN(t)=λt,RN(s,t)=λ2st+λmin(s,t)
    在这里插入图片描述

2计数过程

2.1定义

如果 N t N_t Nt表示直到t时刻为止发生的事件总数,则称实随机过程 { N t , t ≥ 0 } \{N_t,t\geq 0\} {Nt,t0}为计数过程

2.2性质

  1. T n = τ 1 + τ 2 + . . . + τ n = ∑ k = 1 n τ k T_n=\tau_1+\tau_2+...+\tau_n=\sum_{k=1}^{n}\tau_k Tn=τ1+τ2+...+τn=k=1nτk
  2. τ n = T n − T n − 1 \tau_n=T_n-T_{n-1} τn=TnTn1
    在这里插入图片描述
    在这里插入图片描述

2.3定理

2.3.1时间间隔 → \rightarrow 泊松分布

如果计数过程 N = { N t , t ≥ 0 } N=\{N_t,t\geq 0\} N={Nt,t0}的到达时间间隔序列 { τ n , n = 1 , 2 , . . . , n } \{\tau_n,n=1,2,...,n\} {τn,n=1,2,...,n}是独立的、且同服从参数为 λ > 0 \lambda >0 λ>0的指数分布,则该计数过程一定是参数为 λ \lambda λ的泊松分布
证明思路:
依靠 τ n \tau_n τn满足指数分布 → T n \rightarrow T_n Tn满足伽玛分布 → P ( N t = n ) = P ( T n ≤ t < T n + 1 ) = P ( T n ≤ t ) − P ( T n + 1 ≤ t ) \rightarrow P(N_t=n)=P(T_n\leq t<T_{n+1})=P(T_n\leq t)-P(T_{n+1}\leq t) P(Nt=n)=P(Tnt<Tn+1)=P(Tnt)P(Tn+1t)
在这里插入图片描述

2.3.2泊松分布 → \rightarrow 时间间隔

🙄🙄🙄🙄🙄🙄还没有完全看懂
已知泊松过程,证明其时间间隔分布是指数分布。
τ 1 , \tau_1, τ1,我们有 P ( τ 1 < t ) = P ( T 1 < t ) = 1 − P ( T 1 ≥ t ) = 1 − P ( N t = 0 ) = 1 − e − λ t P(\tau_1<t)=P(T_1<t)=1-P(T_1\geq t)=1-P(N_t=0)=1-e^{-\lambda t} P(τ1<t)=P(T1<t)=1P(T1t)=1P(Nt=0)=1eλt为指数分布。
对于 0 < t 1 < t 2 , 0<t_1<t_2, 0<t1<t2,以及充分小的 δ i , \delta_i, δi,
P { t 1 − δ 1 < T 1 ≤ t 1 + δ 1 , t 2 − δ 1 < T 1 ≤ t 2 + δ 1 } P\{t_1-\delta_1<T_1\leq t_1+\delta_1,t_2-\delta_1<T_1\leq t_2+\delta_1\} P{t1δ1<T1t1+δ1,t2δ1<T1t2+δ1}
= P { N t 1 − δ 1 = 0 , N t 1 + δ 1 − N t 1 − δ 1 = 1 , N t 2 − δ 2 − N t 1 + δ 1 = 0 , N t 2 + δ 2 − N t 2 − δ 2 = 0 } ={P\{N_{t_1-\delta_1}=0,N_{t_1+\delta_1}-N_{t_1-\delta_1}=1,N_{t_2-\delta_2}-N_{t_1+\delta_1}=0,N_{t_2+\delta_2}-N_{t_2-\delta_2}=0\}} =P{Nt1δ1=0,Nt1+δ1Nt1δ1=1,Nt2δ2Nt1+δ1=0,Nt2+δ2Nt2δ2=0}
= e − λ 1 ( t 1 − δ 1 ) λ 1 2 δ 1 e − 2 λ 1 δ 1 e − λ 2 ( t 2 − δ 2 − t 1 − δ 1 ) λ 2 2 δ 2 e − 2 λ 2 δ 2 =e^{-\lambda_1(t_1-\delta_1)}\lambda_12\delta_1e^{-2\lambda_1\delta_1}e^{-\lambda_2(t_2-\delta_2-t_1-\delta_1)}\lambda_22\delta_2e^{-2\lambda_2\delta_2} =eλ1(t1δ1)λ12δ1e2λ1δ1eλ2(t2δ2t1δ1)λ22δ2e2λ2δ2

f T 1 , T 2 ( t 1 , t 2 ) = l i m δ 1 → 0 , δ 2 → 0 e − λ ( t 1 − δ i ) λ 2 δ i e − 2 λ δ i e − λ ( t 2 − δ i − t 1 − δ i ) λ 2 δ i e − 2 λ δ i 4 δ 1 δ 2 = λ 2 e − λ t 2 f_{T_1,T_2}(t_1,t_2)=lim_{\delta_1\rightarrow0,\delta_2\rightarrow0}\frac{e^{-\lambda(t_1-\delta_i)}\lambda2\delta_ie^{-2\lambda\delta_i}e^{-\lambda(t_2-\delta_i-t_1-\delta_i)}\lambda2\delta_ie^{-2\lambda\delta_i}}{4\delta_1\delta_2}=\lambda^2e^{-\lambda t_2} fT1,T2(t1,t2)=limδ10,δ204δ1δ2eλ(t1δi)λ2δie2λδieλ(t2δit1δi)λ2δie2λδi=λ2eλt2
∵ \because
T 1 = τ 1 T_1=\tau_1 T1=τ1
T 2 = τ 1 + τ 2 T_2=\tau_1+\tau_2 T2=τ1+τ2由雅可比行列式可以得到
f τ 1 , τ 2 ( t 1 , t 2 ) = λ 2 e − λ ( t 1 + t 2 ) f_{\tau_1,\tau_2}(t_1,t_2)=\lambda^2e^{-\lambda(t_1+t_2)} fτ1,τ2(t1,t2)=λ2eλ(t1+t2)
联想到 τ 1 \tau_1 τ1的概率密度函数为 f τ 1 ( t ) = λ e − λ t , f_{\tau_1}(t)=\lambda e^{-\lambda t}, fτ1(t)=λeλt,而且 τ 1 , τ 2 \tau_1,\tau_2 τ1,τ2相互独立
所以 f τ 2 ( t ) = λ e − λ t , f_{\tau_2}(t)=\lambda e^{-\lambda t}, fτ2(t)=λeλt,所以 τ 2 \tau_2 τ2也服从指数分布
以此类推,可以得到 τ 1 , τ 2 , . . . , τ n \tau_1,\tau_2,...,\tau_n τ1,τ2,...,τn为指数分布

2.4例题

  • 两个独立的泊松过程的和仍然是泊松过程
    可以采取这样的思路证明:
    P ( N 1 + N 2 = k ) = ∑ i = 0 k P ( N 1 = i ) P ( N 2 = n − i ) P(N_1+N_2=k)=\sum_{i=0}^{k}P(N_1=i)P(N_2=n-i) P(N1+N2=k)=i=0kP(N1=i)P(N2=ni)
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在MATLAB中,可以使用`sde`函数和`sdemodel`函数结合来生成带有高斯白噪声和纯跳跃过程的随机微分方程。 具体步骤如下: 1. 首先使用`sdemodel`函数定义随机微分方程的模型,包括其漂移项、扩散项和跳跃项。例如,可以定义一个带有高斯白噪声和纯跳跃过程的随机微分方程如下: ``` function [f,G] = mymodel(t,x,u) f = [x(2); -x(1) + u(1)]; G = [0; u(2)]; end ``` 其中,`x`是随机过程的状态变量,`u`是随机过程的输入变量。这个例子中,状态变量有两个分量,分别代表随机过程的位置和速度,输入变量有两个分量,分别代表高斯白噪声和纯跳跃过程的强度。 2. 然后使用`sde`函数生成随机微分方程的轨迹。该函数的第一个参数是随机微分方程的模型,第二个参数是时间区间,第三个参数是随机过程的初值,第四个参数是输入变量的时间序列和取值序列,例如: ``` T = [0 10]; X0 = [0; 0]; U = [linspace(0,10,100); randn(1,100); poissrnd(0.1,1,100)]; [t,x] = sde(@mymodel, T, X0, U); ``` 其中,`linspace(0,10,100)`生成了100个等间隔的时间点,`randn(1,100)`生成了100个高斯白噪声样本,`poissrnd(0.1,1,100)`生成了100个泊松分布的样本,这些样本组成了输入变量的时间序列和取值序列。 3. 最后,可以使用`plot`函数绘制随机微分方程的轨迹。例如: ``` plot(t,x) xlabel('Time') ylabel('State') title('SDE with Gaussian White Noise and Pure Jump Process') ``` 在上述代码中,`plot`函数绘制了随机微分方程的轨迹。其中,第一列代表随机过程的位置,第二列代表随机过程的速度。 完整的代码如下: ``` function [f,G] = mymodel(t,x,u) f = [x(2); -x(1) + u(1)]; G = [0; u(2)]; end T = [0 10]; X0 = [0; 0]; U = [linspace(0,10,100); randn(1,100); poissrnd(0.1,1,100)]; [t,x] = sde(@mymodel, T, X0, U); plot(t,x) xlabel('Time') ylabel('State') title('SDE with Gaussian White Noise and Pure Jump Process') ``` 在这个例子中,我们定义了一个带有高斯白噪声和纯跳跃过程的随机微分方程,使用`sde`函数生成了其轨迹,并使用`plot`函数绘制了轨迹。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值