小朋友都能懂的人工智能⓾大白话数据库(上)

往期回顾
————————————————————————
小朋友都能懂的人工智能⓵开篇大吉(上)
小朋友都能懂的人工智能⓵开篇大吉(中)
小朋友都能懂的人工智能⓵开篇大吉(下)
————————————————————————
小朋友都能懂的人工智能②卷机神经网络初探(上)
小朋友都能懂的人工智能②卷机神经网络初探(中)
小朋友都能懂的人工智能②卷机神经网络初探(下)
————————————————————————
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(上)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(中)
小朋友都能懂的人工智能⓷ -惊世骇俗的阿“狗”故事(下)
————————————————————————
小朋友都能懂的人工智能⓸ -狗大师的修仙之路(上)
小朋友都能懂的人工智能⓸ -狗大师的修仙之路(中)
小朋友都能懂的人工智能⓸ -狗大师的修仙之路(下)
————————————————————————
小朋友都能懂的人工智能⓹-不可思议的大模型(上)
小朋友都能懂的人工智能⓹-不可思议的大模型(中)
小朋友都能懂的人工智能⓹-不可思议的大模型(下)
————————————————————————
小朋友都能懂的人工智能⓺- 逆天,句中高能!!(上)
小朋友都能懂的人工智能⓺- 逆天,句中高能!!(中)
小朋友都能懂的人工智能⓺- 逆天,句中高能!!(下)
————————————————————————
小朋友都能懂的人工智能⓻–无名的故事与GPT-4训练流程(上)
小朋友都能懂的人工智能⓻–无名的故事与GPT-4训练流程(中)
小朋友都能懂的人工智能⓻–无名的故事与GPT-4训练流程(下)
————————————————————————
小朋友都能懂的人工智能⓼–无名的故事与GPT-4运行(推理)流程(上)
小朋友都能懂的人工智能⓼–无名的故事与GPT-4运行(推理)流程(中)
小朋友都能懂的人工智能⓼–无名的故事与GPT-4运行(推理)流程(下)
————————————————————————
小朋友都能懂的人工智能⓽ Hi AI, Database is all you need(上)
小朋友都能懂的人工智能⓽ Hi AI, Database is all you need(中)
小朋友都能懂的人工智能⓽ Hi AI, Database is all you need(下)
————————————————————————

第10集导读

本集讲述了数据库迷弟老智在设计自家大粮仓时,如何将“数据库”的诸多理念融入粮仓设计的有趣经历,从而引导读者更好地理解关系模型数据库的基本概念,具体对应关系详见正文。
随着业务的迅猛发展,大模型村粮食业务开始遍布全球,来自世界各地的客户的需求越来越多元化。此时,融入关系模型设计理念的大粮仓则有些力不从心。
而无名体内的乃是集合了向量、关系、GIS、图等多种模型的超融合数据库,其向量化模型在应对多元化需求中大放异彩,最终成功解决了难题,助力老智的粮食业务登上新高峰。
其实本集就是描述数据库如何与大语言模型完美结合的精彩实践! 让无名跟随老智和无名的脚步,一起走进这场数据与智能的盛宴吧…

36. 存数据的数据库类似存粮食的粮仓,不神秘

L:前面我们聊到了数据库可以为大模型提供记忆,从而保障大模型能更好地落地。数据库这么神奇,大家想不想再多了解一点。

C妈:想啊!不过感觉数据库有些神秘,怕听不懂。

L:神秘?那咱们继续无名的故事。话说无名和老智凯旋归来之时,恰逢大模型村粮食大丰收,这可把老智高兴坏了。为啥,因为他在训练无名之余顺道做了一个副业,化身为大模型村的最大农场主。看着大米源源不断地往自家粮仓里运送,老智心情大好,于是泼墨挥毫,在自家粮仓大门题下三个大字——“数据库”。

在这里插入图片描述

C妈:啥,“数据库”,这剧情反转的,不应该是题下”粮仓“吗?

L:不仅如此,老智还在每一袋粮食上都写下两个小字——“数据”。有题字的粮食才被允许进入粮仓。虽说把老智累的腰都直不起来了,不过他还是乐此不疲。

A:“数据”?不就是粮食吗?

L:要不怎么说老智是大师级人物呢?这是老智的行为艺术,他就是要用现实生活中的例子来让村民们明白数据库是什么,同时也用行动来向数据库致谢,感恩其不仅治好了无名的失忆,还让无名变得更强更自信了。
老智的题字已经告诉我们,“数据库”即“数据的库”,就是存数据的地方。在老智的眼里,粮食就是数据,而用来装粮食的粮仓,就是数据库。

A爸:哈哈,老智真是一个老顽童啊!对了,数据库存数据,仅此而已,有啥高深之处吗,或者我换个方式问,粮仓设计有啥讲究的地方吗?

L:当然有讲究,老智的这个粮仓可不得了,先说安全性吧。其外墙坚固能抵挡狂风暴雨、内室温度适宜能确保粮食不易变质、防盗大门设有复杂授权机制能确保粮食不被盗…老智逢人便说,“我是从数据库安全机制那得到启发,才想到要在粮仓安全性上下功夫的”。

A爸:那数据库的安全机制是怎样的呢?

L:数据库的安全机制更为复杂,涉及到数据库的备份、副本、回滚、授权、加密、脱敏等等,这是一个大话题,暂不展开说了。不过除了确保数据安全外,数据库在数据处理效率方面也极为出色。问大家一个问题,怎样最大限度缩短粮仓存储粮食的用时?

众人七嘴八舌,有的说用手推车运输粮食,有的说用传输带来运输粮食…
L:大家回答的非常好!我们来看看老智怎么做,他确实是用了手推车也用了传输带来运输粮食,不过他可是用了大量的手推车和传送带。老智说,“我是从数据库并行机制那得到启发,才想到这个方法的”。

A爸:数据库的并行机制怎么说?

L:数据库是运行在主机之上的,主机上的CPU如今都是多核的,数据库为此聪明地采用了多进程分别访问不同核的方式,实现了并行处理能力,从而大幅提升了性能。不过这种能力是需要提前规划设计的,好比粮仓想建造多条传输带,也需要提前规划设计的,可不是说有就有的。

A爸:老智不愧是一个智者。

L:不过话说回来,提升数据库效率可远不止并行操作这一种手段,还有许多其他方法,后续会给大家讲述。

C妈:还真别说,老智搞这么一出行为艺术,让数据库似乎好理解了许多。

L:是的,存数据的数据库类似存粮食的粮仓,不神秘。

37. 存粮食的方式决定粮仓效率,数据库亦如此

A爸:数据库应该还有很多其他讲究吧?

L:当然。我们继续看老智的粮仓。粮仓存粮食只是第一步,要把粮仓用起来才更为重要。如何用?比如有这么一个问题,“从粮仓中取若干大米,如何知道粮仓库存够不够?”
要回答这个问题并不难,只要知道当前粮仓的库存,结合所需取出的大米数量进行比较即可。不过,这可需要老智存储大米时施加技巧,提前规划好。

A:L老师,存储大米能有什么技巧啊?不就是将大米倒入粮仓,装不下就再找一个粮仓继续装呗。

L:小A的想法让粮仓存储大米时很省心,不过在使用粮仓时可就麻烦了。大家想想看,如果是将大米堆积在粮仓中,如何知道这些大米的库存,称重吗?如何知道该取多少,继续称重?这不仅超级麻烦,还增加了产生误差的风险。可以说,当初存大米时的快乐,全都转化成了未来取大米时的痛苦。

A:那老智是怎么做的?

L:大家还记得前面说过,他在每袋粮食上写上“数据”两字吗,请注意这个“每袋”。老智在存储时就考虑将大米用相同规格的袋子装好,确保每袋大米的重量固定且一致。如此一来,库存的大米就从杂乱无章走向井然有序。于是,我们查库存和查所需取出大米数量时,再也不用称重,只需统计大米袋数即可,是不是一下子就简单了许多。

众人恍然大悟。

L:当村民纷纷赞扬老智时,他谦虚的笑一笑,说正是数据库给他的灵感,这个包装成一袋袋的粮食对应数据库中被称之为“行”的东西。多行组成一个数据库块,而多个数据块组成表。
随后老智带着村民进入大粮仓参观,只见粮仓里设立一排排规格统一的货架,甚是壮观。每个货架都有许多格子,粮食袋就放进格子里。

在这里插入图片描述

此时老智忽然来了雅兴,在装着大米袋货架上写下“大米表”三个大字,在装着玉米袋的货架上写下“玉米表”,在装着小米袋的货架上写下“小米表”…做完这些后,老智笑着对大家说,这些货柜的设计正是数据库给他的灵感。刚提到的数据块就是这些格子,刚提到的数据库的表正是这些货架。

A爸:老智这一通表演很不错,确实让大家对数据库的认识变得更直观了。

L:嗯,我们继续。老智有一个幸福的烦恼,大丰收导致老智的粮仓要装不下了,而建新粮仓显然又来不及。
不过老智很快就想到了好主意,他请人将粮食袋中的空气抽干,这样每袋粮食的体积立即减半,于是乎粮仓存储空间不足的问题立马得以解决,不仅如此,还更有利于长时间保存了。

C妈:好主意,老智的这个想法总不至于也是受到数据库的启发吧?

L:还真是哦,面对村民们惊讶的表情,老智自豪地说自己的灵感来源于数据库一种存储相关技术,叫数据压缩。

A爸:哈哈,老智成为数据库的老迷弟了啊!细品粮仓的这些设计方式,真心觉得存储的规划太重要了。

L:是的,存粮食的方式决定粮仓效率,数据库亦如此。

未完待续…
小朋友都能懂的人工智能⓾大白话数据库(中)

系列回顾

“大白话人工智能” 系列
“数据库拍案惊奇” 系列
“世事洞明皆学问” 系列

小朋友都能懂的人工智能⓾大白话数据库

### 反向传播算法的基本概念和原理 反向传播算法(Back Propagation, BP)是一种用于训练人工神经网络的核心方法,主要目的是通过调整权重和偏置来最小化损失函数。以下是关于该算法的一个简单易的解释: #### 1. 基本流程概述 反向传播算法分为两个阶段:**前向传播**和**反向传播**。 - **前向传播**是指输入数据经过每一层神经元逐级传递到输出层的过程,在此过程中计算预测值并评估模型性能(通常用损失函数表示)。 - **反向传播**则是指从输出层开始,沿着网络结构逆向更新各层参数的过程,核心在于利用链式求导法则计算每一步的梯度[^3]。 #### 2. 数学基础 为了使模型更接近真实值,需要不断优化权重 $ w $ 和偏置 $ b $ 。这可以通过梯度下降法完成,其中的关键步骤是计算损失函数相对于这些参数的偏导数 $\frac{\partial L}{\partial w}$ 和 $\frac{\partial L}{\partial b}$ ,从而指导参数如何变化以降低误差[^1]。 具体来说: - 设定初始随机权值; - 计算当前状态下的总误差 E (Error),即 Loss 函数的结果; - 使用链式法则分解复杂的多变量复合函数关系,逐步回溯至每一个节点上的局部贡献量; $$ \delta_j^{l}=\sigma'(z_j^l)\sum_k \delta_k^{l+1}\cdot W_{kj} $$ 这里 $\delta$ 表示误差项,“$\sigma'$”代表激活函数的导数值,而 z 则是由加权输入构成的部分。 #### 3. 实际意义 尽管有人认为传统意义上的BP可能已显陈旧,但它依然是现代深度学习框架内部运作的重要组成部分之一。例如 TensorFlow 或 PyTorch 都内置支持自动微分机制,本质上也是基于相似的思想构建起来的自动化版本[^2]。 ```python import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) # Example of forward pass with one neuron input_data = np.array([0.5]) weights = {'w': np.array([0.8]), 'b':np.array([-0.1])} weighted_sum = input_data.dot(weights['w']) + weights['b'] activation_output = sigmoid(weighted_sum) print(f'Activation Output: {activation_output}') ``` 上述代码片段展示了单个神经元执行一次完整的正向运算逻辑。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

收获不止数据库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值