AIGC从入门到入坑系列文章
AIGC系列第一章--简述
前言
Today,人工智能技术快速发展和广泛应用已经引起大众的兴趣和关注了。特别是作为人工智能重要分支的深度学习,展现出独有的统治力,引领了一场科技革命。作为一名刚毕业的本科生,本身对人工智能感兴趣的我也选择加入这场浪潮中,开坑系列博客,同时作为自己的学习笔记,希望自己能吃透AIGC和AI大模型,探寻一条到AGI的朝圣之路。
首先说明一下AIGC、AI大模型和AGI三个名词的解释,正所谓知其然,才知其所以然。
- AIGC:全名“AI Generated Content”,称为“生成式AI”。由AI自动创作生成的内容,例如AI文本续写,文字转图像的AI图、AI数字化主持人等,都属于AIGC的范畴。
- AI大模型:全名“AI Large Models”,是指具有大量参数和复杂结构的人工智能模型,AI大模型训练需要巨大的计算资源和复杂的分布式系统支持。
- AGI:全名"Artificial General Intelligence",AGI 指的是通用人工智能,也称为强人工智能。AGI旨在实现像人类一样的通用智能,能够在各种不同领域进行学习和推理,并具备类似人类的认知能力。
让我们先吃透AIGC吧~
以下是本篇文章正文内容
学习路径
AI时间线
人工智能简史
提到计算机,人工智能就不得不提到计算机科学之父、人工智能之父----Alan Mathison Turing艾伦·麦席森·图灵,他是计算机逻辑的奠基者,提出了“图灵机”和“图灵测试”等重要概念。为纪念他在计算机领域的卓越贡献,美国计算机协会于1966年设立图灵奖,此奖项被誉为计算机科学界的诺贝尔奖。
1950年图灵提出了图灵测试,他主张用这个测试来判断计算机是否具有“智能”。所谓图灵测试就是隔墙相问,不知道与你对话的是人还是机器。
推荐好文:人工智能风云录之图灵开天香农辟地
1956年的夏天,在美国达特茅斯Dartmouth College 的一次会议上, AI 被定义为计算机科学的一个研究领域, Marvin Minsky (明斯基) ,John McCarthy (麦卡锡) ,Claude Shannon (香农) ,还有Nathaniel Rochester (罗切斯特)组织了这次会议,他们后来被称为AI的奠基人。
2012年,深度学习兴起,深度学习(Deep Learning)是机器学习(Machine Learning)的子集,它使用多层神经网络和反向传播(Backpropagation)技术来训练神经网络。该领域是几乎是由Geoffrey Hinton开创的,早在1986年, Hinton与他的同事一起发表了关于深度神经网络(DNNs-Deep Neural Networks)的开创性论文,这篇文章引入了反向传播的概念,这是一种调整权重的算法。
2016年:DeepMind(14年被谷歌5.25亿美元收购)的AlphaGo在2016年战胜了围棋世界冠军李世石。这是一个历史性的时刻,它标志着人工智能在围棋这个历史悠久且复杂度极高的游戏中超越了人类,对人类对于机器智能和未来可能性的理解产生了深远影响。
2022年:OpenAI发布了ChatGPT语言模型,这个模型基于GPT-3框架,其能力在于生成和理解自然语言,甚至能与人类进行深度交谈。ChatGPT的问世是人工智能在自然语言处理领域的一大里程碑,它开启了人工,智能的新纪元。通过深度学习和大规模数据训练, ChatGPT能理解复杂的人类语言,并生成具有连贯性和创造性的回应。
推荐好文: