叉积 微分 恒等式_现代微分几何:拓扑学基础

本文是一个新专题的第一篇文章,这个专题介绍现代微分几何的理论和价值,阅读本专题的文章需要微积分和线性代数的知识,但是一些困难的或者非主干的基础知识我还是会介绍的。

现代微分几何的研究对象是所谓的微分流形。估计有很多读者在很久以前就听说过这个词,但是一直不知道它的意思。为了引入微分流形,本文介绍必要的拓扑学知识。

古典微积分的研究对象是函数和向量函数,构建它们的载体是实数集和欧式空间,在这些集合里定义了开集,进而就可以定义邻域和收敛,然后定义映射的连续性。为了在更一般的集合里定义开集,拓扑学引入了拓扑空间。

首先我们回忆在欧式空间里的开集概念,以及它的简单性质。

设非空集合

维欧式空间
的子集,满足对于任意
存在
使得对于任意
成立若
则称集合
中的开集。

特别地,规定空集是

中的开集,显然
自身是
中的开集。

作为例子,空间

上的单位开球
中的开集。这是因为对于任意
则对于任意
成立若

设集合

中的开集,则
也是
中的开集。这是因为对于任意
成立
对于集合
可以分别构造一个
并且可以取其中的较小值作为
对于集合

但是开集的这种关于交集的封闭性不能推广到无限的情况,这是因为对于无限多个

它们的下确界可以不是正数。

然而开集的关于并集的封闭性是无限的,叙述如下,它的证明留给读者。

设集合

中的一些开集组成的集合,则
也是
中的开集。

将欧式空间中的开集概念推广到一般的集合中,就得到了拓扑空间概念。

是非空集合
的一些子集组成的集合,满足
  1. 对于任意
    成立
  2. 对于任意
    的子集
    成立

则称

是集合
的一个拓扑,称
中的元素是
在拓扑
下的开集,称
是一个拓扑空间。

是一个拓扑空间,集合
则称
的邻域。

我们常常研究的拓扑空间是Hausdorff空间。

是一个拓扑空间,满足对于任意
存在
的邻域
的邻域
使得
则称
是Hausdorff空间。

接下来为了引入拓扑空间中的连续映射,我们讨论古典微积分中连续向量函数的一个性质。

设非空集合

的一个子集,向量函数
满足对于任意序列
和实数
成立若
则称
是连续的。

上述向量函数

连续的充要条件是对于任意
成立对于任意正数
存在正数
使得对于任意
使得若

所以向量函数

连续的充要条件是对于任意
中的开集
集合

中的开集。

是拓扑空间,映射
满足对于任意
成立

则称

是连续的。

进一步地,可以引入两个拓扑空间的同胚和同胚映射概念。

是拓扑空间,映射
是双射,且
的逆映射
都是连续的,则称
是同胚映射,称
同胚。

比如说,正方体的表面与

上的单位球面
是同胚的,但是它们与空心球的表面
不是同胚的。

同胚是拓扑空间之间的等价关系。如果两个拓扑空间同胚,那么在拓扑学的意义上可以认为它们是相同的。对某些拓扑空间按同胚进行分类,是拓扑学中的重要工作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值