何不学微几?
目录
- 微分流形的几个基本概念
- 切空间(上)
微分流形的几个基本概念
首先,最重要的,我们引入拓扑流形和微分流形的概念。
Def 1:如果Hausdorff空间
Remark:
a.【注1】Hausdorff空间指的是满足T2公理(中任意不同两点都有不交的邻域)的拓扑空间;
b.其实更严格一点,这里应该称之为实流形(real manifold),而与有这种类似关系的则称之为复流形(complex manifold);
c.定义中某点的邻域到的一个映射配合形成的二元组称为流形的一个坐标卡,易知,一个流行上有很多个坐标卡(有时也称为坐标系),至于为啥叫这个名字,你看下面这条就知道了(嘿嘿~
d.指定上的一个坐标卡,我们就称映射到的那个中相应点的坐标为流形中的坐标。注意,流形本身是没有坐标的概念的,我们这里是引入才给出定义的,这与中本身就有的自然坐标不同。
我们知道,在同一点
所以我们就想着给坐标卡划定一个范围,即砍掉那些可能导致混乱的坐标卡,只留下那些“相容”的坐标卡,具体操作如下:
Def 2:满足以下两种情形之一的两个坐标卡
(i)
(ii)
Remark
a.这里相容性的理解还要感谢评论区的帮助哈;
b.关于欧式空间之间映射可微性的定义可见下面的Pre 1和Pre 2,顺序有些错乱,不过感觉还是放在下面好一点;
c.我们给出一张图来帮助大家理解:
举几个例子巩固下刚才学到的吧!
eg1:任意欧式空间或欧式空间的子集都是流形,只要取恒等映射就ok啦;
eg2:任何和某个欧式空间同胚的拓扑空间一定是流形,比如三维球面挖去一点是一个二维拓扑流形,同胚映射如图:
Remark:只是和欧氏空间的子集同胚不行,是我一开始想当然了(捂脸,多谢大佬 @王筝 指正啦~
eg3:
proof:我们这里只是简单地来看一下的情形,其他的貌似就是维的分成块就行了,具体操作类似。
首先我们对每个中的点指定邻域和同胚映射(如果你并不知道我为什么要这么做可能你还需要再看看拓扑流形的定义)如下:
图示如下
Remark:
a.后面我们就可以看到,实际上还可以形成一个微分流形(以以上四个开集和对应的映射为微分结构);
b.用基本群可以证明与任意欧式空间不同胚(没学代拓的我只能装个某字母了。。。以后学会了再来看看要不要补充一波吧)。
eg4:
Remark:为了避免主次颠倒,这里就不展开叙述了,大家如果有兴趣可以随便找一本现代微分几何的教材,上面应该都有介绍,或者我们后面放到一个外篇里具体讨论也可以。
eg5:Mobius带和Klein瓶都是二维流形。(具体见 尤承业《基础拓扑学讲义》P88)
微分流形实际上就是在拓扑流形上附上某种结构(我们称之为微分结构),使得流形间可微映射的概念能够得以建立。
那我就要问你另一个问题啦,你知道我们为啥要引入流形这个概念吗?
其实除了它用处广之外还有一个原因。
那就是它简单啊!(雾)
简单在哪呢?
简单就简单在他和欧式空间的这种奇妙的关系导致了它很多时候流形的问题都可以转换到欧式空间上来解决,很多概念也可以依赖于欧式空间上相应的概念来建立。
其实(实)流形本就是欧式空间的推广啊!
So?
So我们就来用欧式空间间映射可微的概念来定义流形间的可微映射吧!
首先我们来做三个准备工作。
Pre 1:如果定义在开集
Remark:特别地,连续函数记作是的,任意阶可微的函数记作是(光滑)的,解析函数【注2】记作是的。
【注2】若
Pre 2:映射
下面这个概念可能比较拗口,但是其实也是很自然的。
Pre 3:
a.
b.
c.
Remark:
a.【注3】指所有和中某个坐标卡相容的坐标卡一定本身就在中;
b.同理我们可以也可以定义和的微分结构;
c.其实微分结构真的不是微分的结构, 他和微分的关系只是在于后面流形间可微映射的定义要用到它;
d.微分结构不唯一。
Def 3:指定了
Remark
a.同理我们也能定义光滑流形和解析流形;
b.属于给定微分结构的坐标卡我们称为微分流形容许的坐标卡。
下面我们着手引入流形间可微映射的概念。
Def 4:我们称两个流形之间的连续映射
Remark:这里实际上就是用欧式空间中的可微来定义流形间的可微了,下面这张图可以让大家的理解更直观些,表示符号稍有不同,不过我相信大家也都能看懂
随后我们再来补上几个例子。
切空间(上)
首先,陪域为
其实所谓空间上的一个函数无非就是在这个空间的每一点处指定一个实数值,可以理解为物理中的标量场,所谓一个
本节的目的是用线性的观点来讨论流形上某点的光滑函数,即建立某点处的“光滑函数线性空间“,然后再用它来引入切空间的概念。(开讲前某字母要装到位>3<)
Def 5:所谓m维微分流形
Remark:图示如下
可是
哼!那窝们就来收拾收拾这个不听话的喵!
我们在
现在记
Remark:(证明我不会~)
这么重要的概念怎么能不给它起个萌萌的名字呢?
就叫它函数芽(germ)吧!
这里的操作怎么这么眼熟啊,貌似实分析
不管怎么样,我们完成了上面的使命,下面就要来搞一搞切空间(Tangent Space)。
Def 6:若
Remark
a.注意这里的参数曲线是映射不是映射的像!
b.其实定义域不用一定是这样,但是这种形式使我们方便讨论了,并且它也是和一般形式的参数曲线等价滴;
c.所有过点的参数曲线构成的集合记作;
d.给定点的一个光滑函数,我们定义如下运算:,这里值得注意的一点是,这个运算是well-defined的,因为它只关乎到也就是点处的取值,图示如下
Prop 1
a.
b.
Remark
a.即运算对于后一个位置是线性的;
b.是的线性子空间。
下面这个定理是我们遇到的第一个需要稍微花点力气来看的结论,我们就把它作为本篇笔记的结尾吧,剩下的我们下次再谈。
首先为了简单起见,我们对
Th 1:
proof:任取,我们把的第i个元素记作,那么就有
那么就有
这里最后一个的并不是那么显然,其理解的关键之处在于,即这里的是任取的,这就保证了函数的任意性,从而可以让取到任意值,从而保证了其系数一定为。
最后一段书上是这么说的,但其实我还是没理解。。。。(蠢哭
Remark:这个定理旨在告诉我们,。
我想你需要下面这两个推论。
Cor 1
a.
b.
c.
proof:前两个不用多说,我们来看看第三个吧,实际上:
于是。
Remark
a.证明中的第三个用到了Th 1;
b.证明中的第第五个其实我也不太确定。
Cor 2:对于任一微分流形
proof:这个证明有点复杂,我们暂且略过。
OK,那我们先就结束到这,之后再补充几个微分流形的例子上去,也欢迎大家推荐。
啊对,这次我们抄的是陈老的《微分几何讲义》哈。
不要问我今天为什么这么兴奋,我又喝那家店的咖啡了!