pytorch卷积神经网络_PyTorch实战 | 使用卷积神经网络对CIFAR10图片进行分类(附源码)...

本文通过PyTorch实现了一个卷积神经网络,用于CIFAR10图像分类。介绍了网络的定义、训练、反向传播和数据准备过程,包括使用GPU加速训练,并提供了源码。
摘要由CSDN通过智能技术生成

点击上方“迈微电子研发社”,选择“星标★”公众号

重磅干货,第一时间送达

f1542ae90b3a75909a3866d692e7b5c1.png

最近一直在分享机器学习算法原理的讲解文章,实战内容一直在托更,今天以CIFAR10图片分类作为CNN的实战练习项目。以下从网络的定义、训练到测试,全面清晰地给出操作步骤,供大家学习参考。

01

神经网络

如下所示为一个基本的卷积神经网络的模型,将图像输入之后经过卷积操作提取特征,再经过降采样操作后输出到下一层。经过多次多个卷积、池化层之后结果输出到全连接层,经过全连接映射到最终结果。

27d3cd6c3e5d5bc8d3f91503c1c91bc9.png

一个神经网络的典型训练过程可以分为如下几步:

  1. 定义神经网络,包含一些可学习参数(或者叫权重)
  2. 将数据输入网络进行训练,并计算损失值
  3. 将梯度反向传播给网络的参数,据此更新网络的权重,并再次训练

定义网络

如下所示为我们定义的神经网络类NeuralNet。

首先它继承自父类nn.Module,从import可以看到从torch中分别引入了torch.nn和torch.functional,其中nn用于保存常用的神经网络类,而functional库中则是一些网络操作。nn.Module类有两个子类必须重写的方法,初始化方法__init__用于定义网络结构,forward()中定义网络训练操作,当网络对象被调用时会自动执行该方法。

在构造函数__init__中我们定义网络的结构,这里定义了网络的两个卷积层为torch.nn库中的二维卷积函数Conv2d(),nn.Conv2d(1, 6, (5, 5))代表输入数据的通道数为1,输出通道数为5,卷积核为5×5,卷积核长和宽一致的话可以简写为5。用nn.Linear实现全连接操作,输入数据长度为16 * 5 * 5,这是由于之前conv2输出的16通道的5×5的数据,输出长度120的数据。经过三个全连接层输出长度为10

在forward()方法中实现网络的训练过程,将输入数据input_x经过conv1的卷积操作后经过激活函数relu,最后经过池化操作max_pool2d得到第一个卷积层的输出layer1,同样操作后得到第二个卷积层layer2。将卷积的结果通过flat_features()降维,经过第二个卷积层layer2为四维数据[1, 16, 5, 5],通过tensor.size()[1:]选择第一个维度以后的维度相乘得到features为1655=400,通过tensor.view(-1,400)将其转化为长度400的二维数据。最后经过三个全连接层后输出。

import torchfrom torch import nnfrom torch.nn import functional as Funcclass NeuralNet(nn.Module):def __init__(self):super(NeuralNet, self).__init__()        # 两个卷积层self.conv1 = nn.Conv2d(1, 6, (5, 5))self.conv2 = nn.Conv2d(6, 16, 5)        # 三个全连接层self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, input_x):        # 进行两次卷积、池化操作layer1 = Func.max_pool2d(Func.relu(self.conv1(input_x)), (2, 2))layer2 = Func.max_pool2d(Func.relu(self.conv2(layer1)), (2, 2))        # 降维flat = self.flat_features(layer2)        # 经过三个全连接层fc1 = Func.relu(self.fc1(flat))fc2 = Func.relu(self.fc2(fc1))fc3 = self.fc3(fc2)return fc3def flat_features(self, tensor):features = 1for size in tensor.size()[1:]:features *= sizeflat = tensor.view(-1, features)return flat# 创建一个neural_net对象并打印neural_net = NeuralNet()print(neural_net)'''NeuralNet(  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))  (fc1): Linear(in_features=400, out_features=120, bias=True)  (fc2): Linear(in_features=120, out_features=84, bias=True)  (fc3): Linear(in_features=84, out_features=10, bias=True))'''

训练网络

如下所示为将数据送入网络训练并计算损失值的过程。

首先通过torch.randn()生成四维的随机数据,由于我们之前定义网络中Conv2d()函数接收的数据要求是四维的,其中第一维度代表样本数据的个数,第二维代表数据的通道数,第3、4维代表数据大小,这里是32×32的网格。然后将生成的数据送入neural_net(),这里会自动调用该对象的forward()方法进行模型训练并输出结果。

得到输出结果y_output之后通过和目标值进行比较即可得出损失值,这里仍然使用randn创建目标值y_target,注意目标值要和输出值维度相同,我们输入的样本数量为1,最后经全连接层fc3产生的结果长度为10,所以y_output维度为(1, 10),因此y_target也是二维1×10的数据。定义评价函数criterion为nn.MSELoss(),即计算输出和目标的均方误差(mean-squared error)。

x = torch.randn(1, 1, 32, 32)   # 随机产生输入数据y_output = neural_net(x)  # 输入数据并进行训练y_target = torch.randn(1, 10)   # 随机产生目标数据criterion = nn.MSELoss()    # 定义评价函数loss = criterion(y_output, y_target)  # 计算损失值

反向传播

由之前定义的网络可知我们的从输入到输出,数据经过的函数操作如下。

input -> conv2d -> relu -> maxpool2d -> conv2d -> relu -> maxpool2d        -> view -> linear -> relu -> linear -> relu -> linear        -> MSELoss        -> loss
通过tensor的 grad_fn属性记录了这些函数操作,例如从loss向前回退查看grad_fn
print(loss.grad_fn)  # MSELossprint(loss.grad_fn.next_functions[0][0])  # Linearprint(loss.grad_fn.next_functions[0][0].next_functions[0][0])  # ReLU

我们进行反向传播操作,然后就可以查看各层网络参数的梯度

neural_net.zero_grad()  # 清零所有参数(parameter)的梯度缓存loss.backward()  # 反向传播print(neural_net.conv1.bias.grad)  # 查看梯度# tensor([-0.0046, -0.0087,  0.0390,  0.0045, -0.0096,  0.0028])

根据得到的梯度对网络的参数进行更新,例如这里使用随机梯度下降法进行更新,其公式为weight = weight - learning_rate * gradient,即在原有权重的基础上,根据学习率learning_rate减少一定梯度。如下所示遍历网络的所有参数neural_net.parameters并对其进行更新。

learning_rate = 0.01for param in neural_net.parameters():    param.data.sub_(param.grad.data * learning_rate)

然而在使用神经网络时,我们可能希望使用各种不同的更新规则,如SGD、Nesterov-SGD、Adam、RMSProp等。在torch.optim库实现了所有的这些方法,如下所示,首先创建优化器optimizer,然后进行多次迭代训练。

import torch.optim as optim# 创建优化器(optimizer)optimizer = optim.SGD(neural_net.parameters(), lr=0.01)# 在训练的迭代中:for epoch in range(100):    optimizer.zero_grad()  # 清零梯度缓存    output = neural_net(x)    loss = criterion(y_output, y_target)    loss.backward()    optimizer.step()  # 自动更新参数

02

CIFAR10图片识别

卷积神经网络一个常用的领域就是图片分类,而图片分类中最经典的就是对CIFAR10图片数据集进行分类。它是一个包含“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”10中类别的图片库。在CIFAR-10里面的图片数据大小是3x32x32,即:三通道彩色图像,图像大小是32x32像素。

准备数据

pytorch的torchvision提供了CIFAR10库,通过torchvision.datasets.CIFAR10加载该数据集。root为数据集的路径,如果该路径下没有数据,则会从指定站点下载并保存到该路径,train属性标志是训练集还是测试集数据。transform指定了对数据进行的预处理操作。例如这里将两个预处理操作通过Compose放在了transform中,第一步ToTensor将数据转化为张量,第二步通过Normalize()将数据化为正态分布值。前面的(0.5,0.5,0.5)是 R G B 三个通道上的均值,后面(0.5, 0.5, 0.5)是三个通道的标准差,Normalize对每个通道执行以下操作:image =(图像-平均值)/ std。当mean,std都是0.5时将使图像在[-1,1]范围内归一化。例如,最小值0将转换(0-0.5)/0.5=-1

接着使用DataLoader将数据分为多个批次,batch_size指定每个批次包含几个图片,shuffle为是否打乱图片,num_workers指定多个线程去加载数据。当训练很快、加载数据时间过慢时会导致模型等待数据加载而变慢,这时可以采用多线程来加载数据。

import torchimport torchvision# 定义数据预处理操作transform=torchvision.transforms.Compose([    torchvision.transforms.ToTensor(),    torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])# 加载数据data_path = 'D:/Temp/MachineLearning/data'train_set = torchvision.datasets.CIFAR10(root=data_path, train=True, download=True, transform=transform)test_set = torchvision.datasets.CIFAR10(root=data_path, train=False, download=True, transform=transform)# 封装为批数据train_loader = torch.utils.data.DataLoader(train_set, batch_size=4, shuffle=True, num_workers=2)test_loader = torch.utils.data.DataLoader(test_set, batch_size=4, shuffle=False, num_workers=2)# 定义标签值classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

我们通过matplotlib打印其中的一个批次图片和标签。由于之前将图片标准化,所以需要进行反标准化操作。由于CiFAR10的图片数据为3×32×32,需要使用transpose将其转为32×32×3。

import matplotlib.pyplot as pltimport numpy as np# 输出图像的函数def imshow(img):    img = img / 2 + 0.5     # 反标准化    npimg = img.numpy()    plt.imshow(np.transpose(npimg, (1, 2, 0)))    plt.show()# 获取一个批次的训练图片、标签images, labels = iter(train_loader).next()# 显示图片imshow(torchvision.utils.make_grid(images))# 打印图片标签print(' '.join('%5s' % classes[labels[j]] for j in range(4)))

显示结果如下:

7a5239fd366faf4693f63add75be8599.png

定义网络和参数

如下定义卷积网络类并创建一个对象net,以及定义训练的损失函数和优化器。

import torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optim# 定义卷积网络class Net(nn.Module):    def __init__(self):        super(Net, self).__init__()        self.conv1 = nn.Conv2d(3, 6, 5)        self.pool = nn.MaxPool2d(2, 2)        self.conv2 = nn.Conv2d(6, 16, 5)        self.fc1 = nn.Linear(16 * 5 * 5, 120)        self.fc2 = nn.Linear(120, 84)        self.fc3 = nn.Linear(84, 10)    def forward(self, x):        x = self.pool(F.relu(self.conv1(x)))        x = self.pool(F.relu(self.conv2(x)))        x = x.view(-1, 16 * 5 * 5)        x = F.relu(self.fc1(x))        x = F.relu(self.fc2(x))        x = self.fc3(x)        return xnet = Net()criterion = nn.CrossEntropyLoss()   # 损失函数optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 优化器

训练并保存模型

如下所示进行两轮叠代训练,每轮按批次取出训练集的数据投入模型进行训练

for epoch in range(2):  # 进行两轮迭代训练    running_loss = 0.0    # 按批次取出数据进行训练    for i, data in enumerate(train_loader, 0):        inputs, labels = data   # 获取数据和标签        optimizer.zero_grad()   # 清零梯度缓存        outputs = net(inputs)   #  得到预测结果        loss = criterion(outputs, labels)   # 计算损失        loss.backward()     # 反向传播        optimizer.step()    # 更新参数        # 每隔两千次输出一次平均损失值        running_loss += loss.item()        if i % 2000 == 1999:            print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))            running_loss = 0.0print('Finished Training')# 保存训练好的模型MODEL_PATH = './cifar_net.pth'torch.save(net.state_dict(), MODEL_PATH)

载入模型进行测试

模型以及训练好并保存了,那么模型的预测效果如何呢?这就需要在测试集数据上进行检测了,如下所示,我们首先读取保存的模型,然后将测试集的图片数据images投入模型进行预测,然后取得预测值predicted,将其和测试集的标签labels进行比对,统计预测正确的个数correct,除以总数total就是准去率了。

# 加载模型net = Net()net.load_state_dict(torch.load(MODEL_PATH))correct = 0total = 0with torch.no_grad():    for data in test_loader:        images, labels = data        outputs = net(images)   # 将测试集图片投入模型        _, predicted = torch.max(outputs.data, 1)        total += labels.size(0)     # 统计测试集总样本数        correct += (predicted == labels).sum().item()   # 累计预测正确的个数print('在整个测试集上的准确率为: %d %%' % (100 * correct / total))

使用GPU

如果需要使用GPU进行网络训练,需要将模型net和训练集的数据images、标签labels都放到GPU设备上。

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")  # 获取GPU设备print(device)net = Net()net.to(device)    # 将模型放在GPU上for epoch in range(2):  # 进行两轮迭代训练    running_loss = 0.0    # 按批次取出数据进行训练    for i, data in enumerate(train_loader, 0):        inputs, labels = data           inputs, labels = inputs.to(device),labels.to(device)  # 将训练数据放到GPU        ......

推荐阅读

(点击标题可跳转阅读)

  • 表情识别FER | 面部表情识别论文综述 CVPR2019

  • 表情识别FER | 基于深度学习的人脸表情识别系统(Keras)

  • 一文弄懂神经网络中的反向传播法——Back Propagation

  • 卷积神经网络中十大拍案叫绝的操作

  • 机器学习算法之——走进卷积神经网络(CNN)

3b8eb023e9ae643da2c13743561254f4.png
△微信扫一扫关注「迈微电子研发社」公众号

知识星球:社群旨在分享AI算法岗的秋招/春招准备攻略(含刷题)、面经和内推机会、学习路线、知识题库等。

999241cc8cbb55d9c70895eed37ee376.png

△扫码加入「迈微电子研发社」学习辅导群

5b7728a19fa9487e369cb3139b576344.gif

点击“阅读原文”阅读更多机器学习算法原理及实现文章

e481debc5c793477aad6086c66ad873a.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值