拉普拉斯变换公式表_拉普拉斯变换中的S是个什么鬼?

拉普拉斯变换是解决微分方程的强大工具,通过将微分方程转化为代数问题简化计算。本文从幂级数的角度出发,解释了拉普拉斯变换的起源。首先,介绍了幂级数的概念,然后逐步将离散求和转换为连续积分,最终引入自然对数和e,得到以e为底的指数形式,从而导出了拉普拉斯变换。文中还讨论了收敛域的重要性,并通过实例展示了变换过程。拉普拉斯变换的核心在于将离散序列转化为连续函数,这一概念对于理解和应用该变换至关重要。
摘要由CSDN通过智能技术生成

3b7689f02b1ba990234f004eb09b161c.png
A good way of thinking of where the Laplace transform comes from, and a way which dispels some of its mystery is by thinking of power series.(一个比较好的关于Laplace变换的解释方法是从幂级数(Power Series)入手。) — —Arthur Mattuck (原MIT数学系主任)

学过控制的都知道拉氏变换(Laplace Transform),其可以将微分方程转化为代数方程进行运算,使得求解大为简化。

但你们是不是也有这样的疑问:拉氏变换中的

是怎么来的?皮埃尔-西蒙·拉普拉斯
[1]当年为啥就能想出个这样的数学变换公式?

c892fada9ec238ee01248ea25ed0150d.png
Pierre-Simon Laplace (1749–1827)图片来源:(Wikipedia)

我是自从接触拉氏变换就一直有这样的疑问,直到有一天,看了Arthur Mattuck [2]的微分方程才恍然大悟。更有意思的是,导师有一天也问了这样一个看似无厘头的问题,还好当时有所准备。

04e04743a2e352f95da1e78b0394229c.png
Arthur Mattuck

如果学过高等数学,都应该知道:一个幂级数可以写为如下形式:

将其展开其实就是:

如果将其中幂级数的系数

看成一组离散的函数,则上式
也可以写为:

通过把

看作一组关于变量
的离散函数,式
相当于描述了函数
的构造过程。

输入是离散函数数列

,输出则是由多项式构成的函数
。即,只要输入一个
数列,就可以输出一个函数
,其中,
是输出函数
的自变量。

现在,举一个例子,如果取

,即
,那么将得到输出为:

有人说式

最后等于
,但这么说其实不准确,因为并不是对于所有的
都成立,只有当它是一个
收敛级数时才成立!

而式

的收敛域为
,所以当满足收敛条件时,式
可以改写为:

再举一个例子,如果

,即
,则有:

在这个例子里,对于任意

均成立,即收敛域为
其实式
就是函数
处的泰勒展开,或者说是函数
的麦克劳林级数

从上面的例子可以看出,取一个定义在正整数上的离散函数,然后进行无穷次的相加操作,结果却能够产生一个连续函数。而且注意其中的离散函数

的变量为
,相加得出的却是关于变量
的连续函数。

现在,让离散求和变成连续求和,即不再是变量

,而是另外定义一个变量
,并且有
,即
可以为
中的任意数。

如果想用

取替代
,显然不能再用上面处理离散序列的办法进行求和,而是通过积分操作。即:

与式
的区别在于:用
取替代了
;用积分符号替代了累加符号。

我们可以保留这种形式,但是没有数学家喜欢这样做,而且工程师也很少会这样做。因为在做微积分运算时,没有人希望其中有一个指数的底是

之类的积分或微分项,这看起来很头疼。而唯一方便的是取指数的底数为自然常数
。只有
才是人们喜欢用来积分或微分,因为
在微积分时可以保证自身不变函数,详见:《自然底数e怎么就“自然”了?》和《为什么e^x 的导数是还是其自身?》。

因此,将以

为底数的指数替换成以
为底数的指数形式:

既然写出这个积分当然希望其可解,或者说收敛。而只有当

是一个小于
的数时,即
自然指数函数的幂为负数时,该积分才有可能收敛,所以这里要求
。作为对数,还需要满足
(对数的详细介绍请见:《为什么说"对数"可以延长天文学家寿命?》),所以这里有
。显然,当
时,

这个变量看起来貌似有点复杂,我们何不再用一个符号去代替它呢?

那么就用

吧!

,因为上面说了
,取
的话,
就总为正数了,处理正数当然更符合人们的习惯。另外,用
代替
,这样看上去更像我们熟悉的函数形式。这些替换
只是为了修(hao)饰(kan),现将这些替换代入式
中,得:

通过这种方式,我们得到了Laplace Transform

如果用符号表示这种变换,可以将式

写为:

这就是

变换,当输入一个关于
的函数,将得到一个关于
的函数。

最后提一句,这里说的是变换,而对于一个算子来说,就不会是这样,变换和算子的最本质区别在于,经过算子运算,变量没有变,比如微分就是一种典型的算子。经过变换则会改变变量的形式,类似的例子可见:《如何给文科生解释傅里叶变换?》。

参考

  1. ^Pierre-Simon Laplace.  https://en.wikipedia.org/wiki/Pierre-Simon_Laplace
  2. ^Differential Equation,Arthur Mattuck
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值