【自动控制原理】拉氏变换

1、拉氏变换定义

拉普拉斯变换是一种将时域运算转变为复域下进行研究的方法,拉普拉斯变换的定义是:

如果在时域下有函数 f ( t ) f(t) f(t),则它的拉氏变换定义为: F ( s ) = L [ f ( t ) ] = ∫ 0 ∞ f ( t ) e − s t d t F(s)=L[f(t)]=\int_{0}^{\infty}f(t)e^{-st}dt F(s)=L[f(t)]=0f(t)estdt其中,F(s)叫做象函数,f(t)叫做象原函数。

2、拉氏变换性质

2.1 线性性

如果 L [ f 1 ( t ) ] = F 1 ( s ) , L [ f 2 ( t ) ] = F 2 ( s ) L[f_{1}(t)]=F_{1}(s),L[f_{2}(t)]=F_{2}(s) L[f1(t)]=F1(s)L[f2(t)]=F2(s)那么 L [ C 1 f 1 ( t ) + C 2 f 2 ( t ) ] = C 1 F 1 ( s ) + C 2 F 2 ( s ) L[C_{1}f_1(t)+C_{2}f_2(t)]=C_{1}F_{1}(s)+C_{2}F_{2}(s) L[C1f1(t)+C2f2(t)]=C1F1(s)+C2F2(s)

2.2 微分定理

如果 f ( t ) f(t) f(t) 可微,且 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s)那么 L [ d f ( t ) d t ] = s F ( s ) − f ( 0 − ) L[\frac{df(t)}{dt}]=sF(s)-f(0_{-}) L[dtdf(t)]=sF(s)f(0)推广下去,如果 f ( t ) f(t) f(t)二阶可微,那么 L [ d 2 f ( t ) d t 2 ] = s 2 F ( s ) − s f ( 0 − ) − f ′ ( 0 − ) L[\frac{d^{2}f(t)}{dt^{2}}]=s^{2}F(s)-sf(0_{-})-f^{'}(0_{-}) L[dt2d2f(t)]=s2F(s)sf(0)f(0)如果 f ( t ) f(t) f(t) n n n阶可微,那么 L [ d n f ( t ) d t n ] = s n F ( s ) − ∑ i = 0 n − 1 s n − i − 1 f ( i ) ( 0 − ) L[\frac{d^{n}f(t)}{dt^{n}}]=s^{n}F(s)-\sum_{i=0}^{n-1}{s^{n-i-1}f^{(i)}(0_{-})} L[dtndnf(t)]=snF(s)i=0n1sni1f(i)(0)特别地,如果 f ( t ) f(t) f(t) 0 + 0^{+} 0+时刻加入到系统上,系统是零初始状态,那么有 L [ d n f ( t ) d t n ] = s n F ( s ) L[\frac{d^{n}f(t)}{dt^{n}}]=s^{n}F(s) L[dtndnf(t)]=snF(s)

2.3 延迟定理

如果 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s),那么 L [ f ( t − t 0 ) ] = F ( s ) e − s t 0 L[f(t-t_{0})]=F(s)e^{-st_{0}} L[f(tt0)]=F(s)est0控制系统中, e − s τ e^{-s\tau} esτ叫做延时环节。

2.4 位移定理

如果 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s),那么 L [ f ( t ) e a t ] = F ( s − a ) L[f(t)e^{at}]=F(s-a) L[f(t)eat]=F(sa)

2.5 初值定理

如果 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s),那么 lim ⁡ t → 0 + f ( t ) = lim ⁡ s → ∞ s F ( s ) \lim_{t\to0_{+}}f(t)=\lim_{s\to\infty}sF(s) t0+limf(t)=slimsF(s)

2.6 终值定理

如果 L [ f ( t ) ] = F ( s ) L[f(t)]=F(s) L[f(t)]=F(s),那么 lim ⁡ t → ∞ f ( t ) = lim ⁡ s → 0 s F ( s ) \lim_{t\to\infty}f(t)=\lim_{s\to0}sF(s) tlimf(t)=s0limsF(s)

2.7 卷积定理

如果 L [ f 1 ( t ) ] = F 1 ( s ) , L [ f 2 ( t ) ] = F 2 ( s ) L[f_{1}(t)]=F_{1}(s),L[f_{2}(t)]=F_{2}(s) L[f1(t)]=F1(s)L[f2(t)]=F2(s)那么 L [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( s ) F 2 ( s ) L[f_{1}(t)*f_{2}(t)]=F_{1}(s)F_{2}(s) L[f1(t)f2(t)]=F1(s)F2(s) L [ f 1 ( t ) f 2 ( t ) ] = 1 2 π j F 1 ( s ) ∗ F 2 ( s ) L[f_{1}(t)f_{2}(t)]=\frac{1}{2\pi j}F_{1}(s)*F_{2}(s) L[f1(t)f2(t)]=2πj1F1(s)F2(s)

3、常用拉氏变换

f ( t ) f(t) f(t) F ( s ) F(s) F(s)
δ ( t ) \delta(t) δ(t) 1 1 1
K 1 ( t ) K1(t) K1(t) 1 ( t ) 1(t) 1(t)为单位阶跃) K s \frac{K}{s} sK
t n t^{n} tn n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n!
e − a t e^{-at} eat 1 s + a \frac{1}{s+a} s+a1
t n e − a t t^{n}e^{-at} tneat n ! ( s + a ) n + 1 \frac{n!}{(s+a)^{n+1}} (s+a)n+1n!
s i n ( w t ) sin(wt) sin(wt) w s 2 + w 2 \frac{w}{s^2+w^2} s2+w2w
c o s ( w t ) cos(wt) cos(wt) s s 2 + w 2 \frac{s}{s^2+w^2} s2+w2s
t s i n ( w t ) tsin(wt) tsin(wt) 2 w s ( s 2 + w 2 ) 2 \frac{2ws}{(s^2+w^2)^2} (s2+w2)22ws

4、数学上做变换的意义

数学上做“变换”的最大好处就是简化运算,乘法、对数等本质上也都是“变换”。乘法实现的是多个相同的数相加,而对数利用 l n ( a b ) = l n a + l n b ln(ab)=lna+lnb ln(ab)=lna+lnb将乘法运算转化为加法运算。拉氏变换将研究方向从时域转化到频域,其运算过程将微积分运算转化为拉普拉斯算子乘除法运算。对于一个 f ( t ) f(t) f(t)信号施加在零初始状态系统上时,对其对应的 F ( s ) F(s) F(s)每乘以一个 s s s,就相当于对 f ( t ) f(t) f(t)做了一次微分;而每除以一个 s s s,就相当于对 f ( t ) f(t) f(t)做了一次积分。在控制系统中,相当于乘以一个微分环节或积分环节,从而有利于系统建模。

  • 39
    点赞
  • 202
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值