多传感器信息融合的典型应用_多传感器信息融合算法设计及仿真——融合系统结构的设计...

融合系统结构的设计

由于应用领域的不同,信息融合的功能模型也不尽相同。历史上出现过很多种融合模型,在实际应用系统中,应用最为广泛的功能模型是 JDL(Joint Directors of Laboratories)模型,如图 5.1 所示。

石显:多传感器信息融合算法设计及仿真——BP 神经网络算法及数据相关性分析​zhuanlan.zhihu.com

af3c64974dbe7e2c34a8b286712fe63b.png

JDL 信息融合模型经过多次修改,虽然比较完善,但实际工程应用比较广泛,各个部分功能划分不尽相同,需根据实际情况具体制定融合的模型。信息融合过程中,其实质是将信息抽象化,主要是对信息预处理、信息校准、信息关联、信息估计等,此过程又可分为多级来处理,每一级划分的准则是:按照对多源数据信息的抽象层次(分辨率)来划分,可划分为三个层次:数据层融合、特征层融合、决策层融合。

(1) 数据层信息融合

数据层融合又称像素层融合,处于三层融合级别中最低层次,将采集到的数据不经预处理直接送至融合中心综合分析处理,从融合信息中提取可代表这组数据的特征属性,进行模式识别(数据分类),其优点是信息量大、信息准确(保持了原始数据),但同时具有抗干扰能力差、通信量大、实时性差等缺点,如图 5.2 所示。

08fc59fe9fab594f1a0d4b9ee662dba8.png

数据层融合需要多传感器具有同质性,否则需要进行尺度校准,通常用于图像处理方面的应用,对数据传输带宽、数据配准精度要求较高。

(2) 特征层信息融合

特征层融合将多个传感器采集的未经处理的数据进行特征提取后,再对提取的特征信息进行融合。在信息特征提取的过程中,实质上是对信息充分统计的过程,实现了一定程度上的信息压缩,降低了内存开销,便于实时处理。如图 5.3 所示。

7a7583108f2a4c12cfa6832d8e0ac3f1.png

特征层信息融合具体又可分为目标状态信息融合、目标特征信息融合。目标特征信息融合简单来说就是模式识别(数据分类)问题,多传感器信息经过特征提取后相比于单一的传感器增大了特征值的空间维数,常用的融合算法有特征压缩和聚类算法、神经网络、K 阶最近邻法等。特征层融合是三层融合中发展最为成熟的,目前大部分 C3I 应用系统的研究都是在特征层融合上开展的。

(3) 决策层信息融合

决策层融合是最顶层信息融合,包括目标识别、态势评估、威胁评估,是在各个传感器已经做出决策的基础上进行融合,从而进行最终判决,如图 5.4 所示。

83bfb69839ef394b5d1f6442354e236d.png

决策层融合的优点在于数据处理量较小,灵活性高,抗干扰能力强,融合中心处理代价低,同时,由于已经对数据作了抽象处理,无需要求传感器是否是同质。目前应用于该层融合的算法主要包括贝叶斯理论、D-S 证据理论、专家系统方法及模糊集理论等。但由于环境和目标的实变动态特性、先验知识获取较为困难等,决策层信息融合的技术有待进一步发展。 综上所述,各层级信息融合特性比较如图 5.5 所示。

a62175c5ed003045b2d0476a33ca91e3.png

《来源科技文献,经本人分析整理,以及技术会友,广交天下朋友》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值