IMU/光电鼠标/轮式编码器的多传感器融合(非线性卡尔曼滤波)

本文探讨了平面移动机器人如扫地机器人的传感器使用,重点在于IMU的陀螺仪偏航角及其漂移误差,以及轮式编码器在运动模型中的作用。还提到了光电鼠标传感器在定位中的应用,并介绍了卡尔曼滤波在融合不同传感器数据中的预测模型和观测模型构建。论文引用和GitHub资源提供了进一步研究的方向。
摘要由CSDN通过智能技术生成

各传感器分析

imu

对于平面移动机器人(如扫地机器人),IMU只需要一般只需要使用陀螺仪的偏航角(YAW),陀螺仪的偏航角有时间漂移的误差存在,一般分为系统漂移误差(offset)和随机时间漂移误差。

轮式编码器

没啥好说的,两轮差分机器人有对应的运动模型,累计误差随着打滑等因素逐步变大。需要把轮径和两轮中心距标定出来,标定的方法比较多(todo:更新三种标定方法)。

参考论文:

Ego- and object motion estimation

论文中的工程:

GitHub - tum-phoenix/drive_ros_localize_odom_fusion: Fuses odometry message from various sources

mediaTUM - Media and Publication Server

光电鼠标传感器

可以测出来xy偏移量的,放在机器人不同的位置和放法是有讲究的。

卡尔曼融合滤波

预测模型

模型就是两轮差分轮的模型,这里要做一个偏导,算出雅可比矩阵,即状态转移矩阵F,也就是这里体现了非线性,其他按照卡尔曼滤波算法的流程走就可。

起始模型方差P0设为0.1×单位矩阵,过程噪声Q从小往大了调。

观测模型

todo

搞个状态变换矩阵H出来

测量噪声协方差R根据静止/直线运动和圆周运动统计出来,算出来×9倍(按照3sigma高斯噪声模型来处理)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值