回归分析结果表格怎么填_spss回归分析结果图,帮忙看一下,麻烦详细地解释解释...

优质回答 回答者:jayjay

R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数。你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高,尤其是在这么大的样本量(1017对数据点)下更是难得。

系数表格列出了自变量的显著性检验结果(使用单样本T检验)。截距项(0.000006109)的显著性为0.956(P值),表明不能拒绝截距为0的原假设;回归系数(X项)为0.908,其显著性为0.000(表明P值小于0.0005,而不是0。想看到具体的数值,可以双击该表格,再把鼠标定位于对应的格子),拒绝回归系数0.908(X项)为0的原假设,也就是回归系数不为0;标准化回归系数用于有多个自变量情况下的比较,标准化回归系数越大,该自变量的影响力越大。由于你的数据仅有一个自变量,因此不需要参考这项结果。

对于线性回归,我在百度还有其他的回答,你可以搜索进行补充。

-----------------------------------------------------------------

回答者:huyang159753

拟合程度:调整的R方,0.951,显著;

方程的显著性:Anova方差检验(F检验),P值=0,方差不具有齐性,说明变量存在差异,适合回归;

系数的显著性检验:T检验:常数项的P值=0.956,接受常数项为0的原假设,方程的常数项为0;

X的系数检验P值=0,拒绝系数为0的原假设,变量X的系数为0.98.

-----------------------------------------------------------------

回答者:物流助手

模型是显著的

x也是显著的

我替别人做这类的数据分析蛮多的

TAGS: 回归系数

### SPSS 中多元逻辑回归结果的分析与解释 #### 多元逻辑回归概述 当因变量具有两个以上类别时,适用多元逻辑回归模型。此模型扩展了二元逻辑回归的概念,允许预测多个类别的概率分布。 #### 数据准备与建模过程 在SPSS中执行多元逻辑回归的操作路径为:`分析 -> 回归 -> 多项Logistic...` 。在此过程中需指定因变量以及一个或多个连续型或分类型自变量[^2]。 #### 解读主要输出指标 ##### 1. 基本拟合优度统计量 - **伪R方(Pseudo R-Square)**:衡量模型整体解释力,常用Cox & Snell 和 Nagelkerke两种形式表示。 ##### 2. 模型似然比检验 - **卡方值 (Chi-square)** 及其对应的p-value用于评估整个模型相对于零假设(即所有系数均为0)是否有显著改进。 ##### 3. 参数估计表格 参数估计表提供了各个自变量对于不同水平下相对风险的影响程度: - **B列**代表未经调整的优势比(Beta Coefficient),反映了每单位变化带来的自然对数尺度上的影响; - **S.E.(标准误)** 描述了上述估计值的标准误差大小; - **Wald χ²测试**及其伴随的概率值(p> |z|),用来判断某个特定因素是否对该事件的发生率产生了统计学意义上的差异; - **Exp(B)** 则给出了更直观的风险比率(Odds Ratio, OR),表明某特征增加一单位时目标发生几率的变化倍数;如果该数值大于1,则说明随着这个因子增大,所研究现象发生的可能性也相应提高;反之则降低。 ```plaintext Variable B S.E. Wald df Sig. Exp(B) ----------------------------------------------------------- Age .078 (.019) 16.54 1 .000 1.081 Sex(Male=1) -.456 (.213) 4.56 1 .033 .634 ... ``` 此处展示了一个简化版的参数估计表样例,其中年龄(Age)每增长一年患病几率大约提升约8%,而男性相较于女性而言发病风险降低了近37%[^1]。 #### 预测准确性评价 通过查看混淆矩阵可以了解实际观测值同预测值之间的匹配情况,并据此计算敏感性和特异性等性能指标来进一步验证模型的有效性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值