Heterogeneous Graph Attention Network
这篇论文将会发表在WWW 2019会议上。
ABSTRACT
GNN在深度学习领域表现出了强大的性能。但是,在包含不同节点和边的HIN领域,GNN做的还不够完善。论文提出了一种新的异构图神经网络分层注意力机制,涉及到节点级别和语义级别。节点级别的Attention主要学习节点及其临近节点间的权重,语义级别的Attention是来学习基于不同meta-path的权重。
KEYWORDS
Social Network, Neural Network, Graph Analysis
INTRODUCTION
真实世界中的数据往往是复杂的图结构形势,如:社交网络等,网络中包含不同的节点和不同语义的边。
这部分介绍了GNN、Attention mechanism、HIN等。由于HIN的复杂性,传统的GNN并不能直接应用于HIN中。这就需要新的方法来解决这个问题,论文提出了HAN模型(Heterogeneous graph Attention Network)。
RELATED WORK
Graph Neural Network
GNN作为深度学习领域的扩展,