图注意力网络_异构图注意力网络 Heterogeneous Graph Attention Network

Heterogeneous Graph Attention Network (HAN)是一种针对异构信息网络的新型图神经网络,通过节点级和语义级的注意力机制,解决了传统GNN在处理复杂网络结构中的局限性。HAN在节点级别学习相邻节点的权重,并在语义级别融合不同meta-path的权重,提供了一种有效的异构图表示方法。实验表明,HAN在DBLP、ACM、IMDB等数据集上的性能优于GCN、GAT等基线模型。
摘要由CSDN通过智能技术生成

0bfd0de910003c31ca7b927c08da1078.png

Heterogeneous Graph Attention Network

这篇论文将会发表在WWW 2019会议上。

ABSTRACT

​ GNN在深度学习领域表现出了强大的性能。但是,在包含不同节点和边的HIN领域,GNN做的还不够完善。论文提出了一种新的异构图神经网络分层注意力机制,涉及到节点级别和语义级别。节点级别的Attention主要学习节点及其临近节点间的权重,语义级别的Attention是来学习基于不同meta-path的权重。

KEYWORDS

Social Network, Neural Network, Graph Analysis

INTRODUCTION

​ 真实世界中的数据往往是复杂的图结构形势,如:社交网络等,网络中包含不同的节点和不同语义的边。

​ 这部分介绍了GNN、Attention mechanism、HIN等。由于HIN的复杂性,传统的GNN并不能直接应用于HIN中。这就需要新的方法来解决这个问题,论文提出了HAN模型(Heterogeneous graph Attention Network)。

RELATED WORK

Graph Neural Network

​ GNN作为深度学习领域的扩展,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值