举例1
计算期望 E q ( x 1 ∣ x 0 ) [ log p θ ( x 0 ∣ x 1 ) ] \mathbb{E}_{q(x_1|x_0)}[\log p_\theta(x_0|x_1)] Eq(x1∣x0)[logpθ(x0∣x1)] 需要知道分布 q ( x 1 ∣ x 0 ) q(x_1|x_0) q(x1∣x0) 和函数 log p θ ( x 0 ∣ x 1 ) \log p_\theta(x_0|x_1) logpθ(x0∣x1)。这个期望表示的是,在给定 x 0 x_0 x0的条件下 x 1 x_1 x1 的概率分布 q q q,对数概率 log p θ ( x 0 ∣ x 1 ) \log p_\theta(x_0|x_1) logpθ(x0∣x1) 的平均值。其中, p θ ( x 0 ∣ x 1 ) p_\theta(x_0|x_1) pθ(x0∣x1) 是参数化条件概率分布,参数由 θ \theta θ给出。
要计算这个期望,你可以按照下面的步骤操作:
-
知道或假设 q ( x 1 ∣ x 0 ) q(x_1|x_0) q(x1∣x0)的形式:你需要有 q q q 分布的显式形式,或者至少能够从这个分布中抽样。
-
知道 log p θ ( x 0 ∣ x 1 ) \log p_\theta(x_0|x_1) logpθ(x0∣x1)的形式:你需要能够计算给定 x 1 x_1 x1 时 log p θ ( x 0 ∣ x 1 ) \log p_\theta(x_0|x_1) logpθ(x0∣x1) 的值,这通常取决于模型的参数 θ \theta θ。
-
积分或求和:期望的计算取决于 x 1 x_1 x1是连续还是离散的。
-
如果 x 1 x_1 x1 是离散的,期望是一个求和问题:
E q ( x 1 ∣ x 0 ) [ log p θ ( x 0 ∣ x 1 ) ] = ∑ x 1 q ( x 1 ∣ x 0 ) log p θ ( x 0 ∣ x 1 ) \mathbb{E}_{q(x_1|x_0)}[\log p_\theta(x_0|x_1)] = \sum_{x_1} q(x_1|x_0) \log p_\theta(x_0|x_1) Eq(x1∣x0)[logpθ(x0∣x1)]=x1∑q(x1∣x0)logpθ(x0∣x1) -
如果 x 1 x_1 x1 是连续的,期望是一个积分问题:
E q ( x 1 ∣ x 0 ) [ log p θ ( x 0 ∣ x 1 ) ] = ∫ q ( x 1 ∣ x 0 ) log p θ ( x 0 ∣ x 1 ) d x 1 \mathbb{E}_{q(x_1|x_0)}[\log p_\theta(x_0|x_1)] = \int q(x_1|x_0) \log p_\theta(x_0|x_1) dx_1 Eq(x1∣x0)[logpθ(x0∣x1)]=∫q(x1∣x0)logpθ(x0∣x1)dx1
-
-
计算:根据 q q q 和 log p θ \log p_\theta logpθ 的具体形式,这个计算可以通过解析方法直接完成,或者如果解析解不可行,则可以使用数值方法如蒙特卡洛积分。
蒙特卡洛估计
如果无法解析计算期望,可以使用蒙特卡洛方法来估计。这种方法涉及从 q ( x 1 ∣ x 0 ) q(x_1|x_0) q(x1∣x0)中抽取样本,然后计算样本的函数值的平均值来估计期望:
- 从 q ( x 1 ∣ x 0 ) q(x_1|x_0) q(x1∣x0) 中抽取 N N N 个独立样本 { x 1 ( i ) } i = 1 N \{x_1^{(i)}\}_{i=1}^N {x1(i)}i=1N。
- 计算每个样本的 log p θ ( x 0 ∣ x 1 ( i ) ) \log p_\theta(x_0|x_1^{(i)}) logpθ(x0∣x1(i))。
- 计算这些值的平均:
E ^ q ( x 1 ∣ x 0 ) [ log p θ ( x 0 ∣ x 1 ) ] ≈ 1 N ∑ i = 1 N log p θ ( x 0 ∣ x 1 ( i ) ) \hat{\mathbb{E}}_{q(x_1|x_0)}[\log p_\theta(x_0|x_1)] \approx \frac{1}{N} \sum_{i=1}^N \log p_\theta(x_0|x_1^{(i)}) E^q(x1∣x0)[logpθ(x0∣x1)]≈N1i=1∑Nlogpθ(x0∣x1(i))
随着 N N N 的增加,蒙特卡洛估计会趋于真实的期望值。
请注意,为了具体计算这个期望,我们需要具体的分布和函数形式,上述只是一种通用方法。
举例2
蒙特卡罗方法是一种基于随机抽样来近似复杂积分的计算技术。在这个特定的情况下,我们看到的是一个期望值,其中包含一个KL散度项,用于衡量两个概率分布 q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xt∣xt−1) 和 p θ ( x t ∣ x t + 1 ) p_\theta(x_t|x_{t+1}) pθ(xt∣xt+1) 之间的相似度。这个期望值是在条件分布 q ( x t − 1 , x t ∣ x 0 ) q(x_{t-1},x_t|x_0) q(xt−1,xt∣x0) 下计算的。
蒙特卡罗估计的基本步骤通常包括以下几个步骤:
-
抽样:从条件分布 q ( x t − 1 , x t ∣ x 0 ) q(x_{t-1},x_t|x_0) q(xt−1,xt∣x0) 中独立地抽取 N N N 个样本对 ( x t − 1 ( i ) , x t ( i ) ) (x_{t-1}^{(i)}, x_t^{(i)}) (xt−1(i),xt(i))。
-
计算KL散度:对于每个样本对,计算 D K L ( q ( x t ∣ x t − 1 ( i ) ) ∣ ∣ p θ ( x t ∣ x t + 1 ) ) D_{KL}(q(x_t|x_{t-1}^{(i)})||p_\theta(x_t|x_{t+1})) DKL(q(xt∣xt−1(i))∣∣pθ(xt∣xt+1))。
-
平均:取所有计算得到的KL散度值的平均值作为整体期望的估计。
给出的期望可以通过以下的蒙特卡罗估计来近似计算:
E ^ = 1 N ∑ i = 1 N D K L ( q ( x t ∣ x t − 1 ( i ) ) ∣ ∣ p θ ( x t ∣ x t + 1 ) ) \hat{\mathbb{E}} = \frac{1}{N} \sum_{i=1}^{N} D_{KL}(q(x_t|x_{t-1}^{(i)})||p_\theta(x_t|x_{t+1})) E^=N1i=1∑NDKL(q(xt∣xt−1(i))∣∣pθ(xt∣xt+1))
其中 N N N 是抽样的数量, D K L D_{KL} DKL 是对于每个样本 i i i 计算的KL散度。
这个估计的准确性将随着 N N N 的增加而提高,因为蒙特卡罗估计的方差与 1 / N 1/\sqrt{N} 1/N 成反比。然而,选择合适的 N N N 是一个权衡计算成本和估计精度的问题。在实践中,你可能需要采取额外的步骤来确保样本的代表性,并可能需要使用方差缩减技术来提高估计的效率。