一、正交实验设计过程
采用正交实验设计选择实验方案的过程比较复杂,为了简化设计过程,日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
最简单的正交表是
n=c×s-c+1
其中n为正交设计的数量,即正交表中的行,c为属性的数量,即正交表中的列,s为属性水平的数量。
正交表例如
如果我们所做的选择实验是4个属性,每个属性3个水平,我们可以将每个属性水平进行编号,然后按照表1-1中的编号代入属性水平,每一行就是一个备选方案,即被调查者面临的产品组合,共构建了8个。

一个正交表中也可以各列的水平数不相等,我们称它为混合型正交表,如

二、正交实验设计的性质:
(1)每一列中,不同的数字出现的次数相等。例如在两水平正交表中,任何一列都有数码“1”与“2”,且任何一列中它们出现的次数是相等的;如在三水平正交表中,任何一列都有“1”、“2”、“3”,且在任一列的出现数均相等。
(2)任意两列中数字的排列方式齐全而且均衡。例如在两水平正交表中,任何两列(同一横行内)有序对子共有4种:(1,1)、(1,2)、(2,1)、(2,2)。每种对数出现次数相等。在三水平情况下,任何两列(同一横行内)有序对共有9种,1.1、1.2、1.3、2.1、2.2、2.3、3.1、3.2、3.3,且每对出现数也均相等。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。通俗的说,每个属性的每个水平与另一个属性各水平各碰一次,这就是正交性。
三、 正交实验设计的特点
进行正交实验设计的正交表必须同时具备两个特点,有一条不满足,就不是正交表。
1) 每列中不同数字出现的次数相等。这一特点表明每个属性的每个水平与其它属性的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它属性水平的干扰,能有效地比较试验结果并找出最优的试验条件。
2) 在任意2列其横向组成的数字对中,每种数字对出现的次数相等。这个特点保证了试验点均匀地分散在属性与水平的完全组合之中,因此具有很强的代表性。