1.引言
人口问题是本世纪人类所面临的重大问题之一,相信不少人都听说过“人口爆炸”这个词。这个词最早出现在斯坦福大学生物学教授保罗·艾里奇(PaulEhrlich)于1968年出版的一书《人口爆炸》中,指的是现代世界人口增长超过了土地和自然资源的承载力,必然会导致一系列的人类生存危机。
这一说法是有统计数字做支持的,地球人口从10亿到20亿用了100多年,从20亿到40亿用了不到70年,而在2012年,世界人口已经突破了70亿,据预测到本世纪中叶世界人口可能超过100亿,很多人认为地球是无法承载这么多人口的,这才有了所谓的“人口爆炸”理论。社会学家和统计学家利用各种工具与理论来研究人口增长,为人类的未来寻找出路。

东京街头拥挤的人潮
人口爆炸理论是西方学者关于人类未来的一种悲观预测,不过也有不少反对观点。当然,本文不打算陷入社会学和人口学的争论当中,只是来讨论一下数学家是怎么研究人口增长问题的。
而从数学的角度来研究人口增长,是始于18世纪。主要方法就是建立数学模型,通过对既有的人口数据进行拟合,来预测未来的人口数据。建立模型所使用的工具就是微分方程(differential equation),从最简单的指数增长模型开始,不断地往里面加入新的因素,比如,环境容量,人口迁徙,年龄结构等等因素,到如今模型已经变得非常复杂。我们今天就来简单介绍一下三种最基本的模型。
2.指数增长模型(exponential growth model)
指数增长模型是最早的,也是最简单的人口增长模型,它是由英国人口学家、经济学家马尔萨斯(Thomas Robert Malthus,1766~1834)提出来的。因此也叫马尔萨斯模型。

马尔萨斯肖像
马尔萨斯1766年生于英国的一个贵族家庭,1784年进入剑桥大学,1798年成为牧师,并开始进行人口学研究,1805年成为英国第一位经济学教授。
马尔萨斯的代表著作是出版于1798年的《人口论》(Principle of Population),也翻译成《人口原理》。在这部书里他提出一个重要理论:在不加限制的情况下,人口将呈几何级数增长,而生产资料呈算术级数增长。这里的几何级数和算术级数听起来可能比较陌生,但它实际上就是等比数列和等差数列的意思。而等比数列对应到函数里面就是指数函数(exponential function)