【电子稳像】Auto-Directed Video Stabilization with Robust L1 Optimal Camera Paths 笔记

本文介绍了电子稳像技术的一种方法,通过L1优化计算相机的平滑路径,模拟专业拍摄效果。该算法利用线性规划最小化一阶、二阶和三阶微分,无需交互操作和三维重建。流程包括估计原始路径、计算平滑路径及视频重合成。优化路径由静止、恒速和平加速分段构成,显著改善视频稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    算法通过去除原始拍摄视频中不必要的抖动来计算相机优化后的路径,目标是优化后的路径模仿专业的拍摄器械出来的效果;可以将优化相机路径看作为静态、线性运动和二次曲线运动分割段构成。算法是通过线性规划方法最小化优化路径的一阶微分、二阶微分和三阶微分。算法优点在于不需要交互操作,也不需要事先对场景进行三维重建求解相机参数,在后处理算法中操作简单,实现效果强大;

    一般的后处理电子稳像的步骤包括:(1)估计原始相机路径;(2)估计出新的平滑相机路径;(3)使用优化的平滑相机路径来重新合成稳像视频。

    我们将计算的优化后相机路径P组成为下面的分段:

  (1)静止的路径表示的是静态相机拍摄,一次微分等于0;

    (2)  恒定速度的路径表示一个稳定平移,二次微分等于0;

  (3)恒定加速度的路径表示为在静止拍摄与平移间的变化,三次微分项等于0;

线性规划解决方法:

   假设原始相机路径C通过特征点跟踪来找到并且被描述为参数线性运动模型,离散的把视频帧的连续帧之间的变换矩阵F模型为特征点在两帧之间的运动。原始路径C可以可以考虑成离散的F矩阵的连乘;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值