测度定义_初学“依测度收敛”需填的坑,我在这里巨啰嗦地填一遍。(心血之作抑或脑残之作?)...

本文详细阐述了可测函数的性质,特别是针对依测度收敛的概念,介绍了如何运用抠装零测集技巧进行分析。通过实例与证明,揭示了在研究依测度收敛时遇到的特殊问题,强调了从简洁到繁复再到简洁的理解过程,旨在帮助读者深入理解这一数学概念。
摘要由CSDN通过智能技术生成

“简洁”抑或“自然”这其实是一个选择。周民强的《实变函数论》选择了“简洁”,而我在这里则选择“自然”地陈述。“简洁”的东西是经过刻意雕琢的,甚至把很多思考都留白了,但是故事的脉络会比较清晰,而我在这里选择“自然”地陈述,意思就是用最自然而然的方式去陈述这个新生问题,这样子的做法,是严谨细致且自然的(啰嗦的),但是不太容易做到简洁,甚至有时候会让人陷入细节中而丢失大局观。因此我的建议是,第一遍读原书为主,第二遍可以参照我在这里的写作,做一些严谨细致地理解,把原书上的留白都补上,第三遍再化繁为简回到原书本身,再次回看原书时,你就有确切地“千言万语皆心领神会”的感知了。

另外,有一个学长给我说过,严谨啰嗦地把细节都呈现出来未必是最好的学习方式,甚至是极不友好的的方式,但是我在这里一直觉得,我们应该从“简洁入手”,然后去繁杂的细节世界里非常吃力地历练,然后再“化繁为简”,我觉得一直在简洁中害怕繁琐而得的简洁,与化繁而来的简,本身就是两种境界,后者才叫做“绝知此事”,而前者就像做学问中的懦夫。本文就着眼于繁的部分,让人在啰嗦中开始暴躁,然后慢慢变得有秩序,然后就心领神会了,看原书的时候自然有一种一切皆在不言中的意思了。

对于看到本文的老师学长们,我恳请你们指点文中的不足和错误;对于看到本文的同学们,我希望我的呈现能够帮助到你们。如果有很多同学喜欢本文这种风格的notes的话,我会持续写作。欢迎大家在评论区以及私信和我交流,共同学习,共同成长!

一切“困难”的开端是,可测函数是“广义实数值”函数,也就是我们认为

是合法的,注意在这里
是一个值,而不是“无穷大量”(不是极限过程
)。当我们把数域从
扩充到
,我们自然可以定义
的顺序、加减法以及乘法。但是我们特别强调类似
是没有意义的,但是这里我们不能用数学分析里“极限过程”的观点去解释这个式子是无意义的,也就是这里其实并不是数学分析里的“无穷大量”的经典未定式,究其原因在于在这里
是一个值,而不是极限过程!正确地说明
无意义的方法是,如果其有意义,那么
,则
,即发现矛盾。

正因为可测函数是广义值函数,因此在研究其性质的时候,要特别注意一些特殊的问题。下面举一个例子。

定理1
上的可测函数,则下列函数都是
上的可测函数:

(i)

(ii)

(iii)

(iv)

证明

我们要特别注意到

是广义值函数。(i)的证明比较直白,可以照搬原书上的证明故不赘述。我们重点关注(ii)的证明。

首先,能写出

这个式子,就说明它满足“被良好定义”这个前提,也就是不存在在某个
。这里的逻辑确实有一些绕,平时我们习惯说因为
是良好定义的,所以我们写出
,而这里的逻辑是既然我们写出了
,那么它一定满足良好定义的前提。类似的逻辑会在接下来的论述中反复出现,我们给这种特别的逻辑一个名字叫做“
反演逻辑”。(注意,原书上并没有显式地给出“反演逻辑”或类似其的专有名词,但我为了强调这种特别的逻辑会在后续反复使用,也为了后续行文的方便,就“生造”了这么一个词。)

好了到这里,我们知道了通过反演逻辑,我们认为

也是一个合法的广义值函数,那么怎么证明它是可测函数呢?这里会用到一个后续反复使用的技巧,把无穷值点集合先抠掉,然后看需要再装回去,我们给这种特别的技巧一个名字叫做“
抠装技巧”(注意,原书上并没有显式地给出“抠装技巧”或类似的专有名词,但我为了强调这种技巧它存在且被反复使用,也为了后续行文方便,就“生造”了这么一个词)。下面我们开始讲本问题具体怎么“抠装”了。
上是实值函数,在
取正负无穷,
上是实值函数,在
取正负无穷,原书上已给出
上是可测函数的证明,并且,我们可以证明
也可测函数,因此
上是可测函数。

我们在证明(iii)的时候也采用类似的抠装技巧。原书上已经给出了

上是可测函数的证明,并且,我们可以证明
也可测函数,因此
上是可测函数。

(iv)这个结论原书上没有给出,但是后面用到了,因此我也就将其列在这里,它的证明很简单直白,因此在这里就不写了。

最后总结一下,若

上的可测函数,那么通过规则(i)-(iv)制作的在
上定义良好的函数也是可测函数。注意需要检查这个被制成的函数在
上是定义良好的(即没有出现
),这是大前提。

证毕。

下面我们来看依测度收敛的定义

定义2 依测度收敛
上几乎处处有限的可测函数.若对任给的
,有
,则称
上依测度收敛于
.

在这个定义中我们要注意

这个式子需要采用“反演逻辑”来理解,即能写出这个式子的前提是这个式子是良好定义的,也就是发生
以及
们是排除在集合
之外的。

我们注意到“定义2”依测度收敛里的研究对象是几乎处处有限的可测函数们,因此在研究依测度收敛时,我们可以采用一种更加特殊的抠装技巧,我们将其称为“抠装零测集技巧”,即把零测的无穷值点集合先抠掉,然后看需要再装回去。(一样这个术语也是我“生造”的。)而事实上这个技巧,也是我们说明

是可测集的关键(它也是依测度收敛定义合法的前提)。 注意到
上几乎处处有限的可测函数。我们设
上处处有限,且
,在这里
。我们设
上处处有限,且
。我们设
,显然
。接下来我们使用抠装零测集技巧,我们把零测集
抠掉,那么根据“定理1”,
上是可测函数,因此
是可测集,另外显然零测集
的子集
是零测集,所以将其装回去,即它们的并
是可测集。

综上,符号

合法。

我们接着来看证明过程中使用抠装零测集技巧的定理3。

定理3
上同时依测度收敛于
,则
上是几乎处处相等的。

证明 根据依测度收敛的定义我们知道

上几乎处处有限的可测函数。我们设
上处处有限,且
,在这里
。我们设
上处处有限,且
。我么设
上处处有限,且
。我们设
,显然
。接下来我们使用抠装零测集技巧,我们把零测集
抠掉,
上都是可测实值函数。任取一个
。因为
上依测度收敛于
,我们易知
。同理,我们有
。对于所有的
,对于所有的
,我们有
。因此,对于所有的
,我们有
,即
。令
,我们有
,另外显然零测集
的子集
是零测集,所以将其装回去,它们的并

因此,对于任意

,我们有
。即
上是几乎处处相等。

证毕

下面我们继续来看一个使用抠装零测集技巧的例子。

定理4
上的几乎处处有限的可测函数,且
。若函数列
上几乎处处收敛到
,则对任给
,令
,有
。进一步地,
上依测度收敛于

证明

是固定的。根据我们在“定义2”时的相关讨论易知
是可测集。如果
,在
点处数列
一定不收敛到实数值。我们设
上,
处处收敛到
,且
。我们设在
上,
是实数值的,且
。那么,在
上,
是实数值的,且
处处收敛到
。因此
是零测的,故
。又因为
,即
,所以

更进一步地,

,即
。即对任给的
,有
上依测度收敛于

证毕

在以下定理中我们遇到了函数列

在某个集合上一致收敛到
的问题,注意当我们提及“一致收敛”,默认前提是在该集合上
以及
都是实值函数。
这么做的原因是,在于“一致收敛”这个概念不太方面推广到广义值函数(当然,有同学对此提出过不同意见,欢迎大家就这个问题在评论区讨论)。
定理5
上几乎处处有限的可测函数。若对任给的
,存在
,使得
上一致收敛于
,则
上依测度收敛于

证明 任取一个

。任取一个
。则存在
,且
上一致收敛于
。也就是对于此
,存在一个正整数
,当
,对任意
,我们有
,即
,即
。也就是固定一个
,无论
取的多小,都会存在一个
,当
时,
。因此,
。因此,
上依测度收敛于
证毕。

下面给出依测度Cauchy列的定义。

定义6 依测度Cauchy列
上几乎处处有限的可测函数。若对任给的
,存在正整数
,如果
,那么
,则称
上的依测度Cauchy列。

注意

是可测集的原因我们已经在“定义2”下面的解释中给出过。本定义有以下等价表述:
定义6的等价表述
上几乎处处有限的可测函数。若对任给的
,有
,则称
上的依测度Cauchy列。

下面来看一个依测度Cauchy列的重要性质。

定理7
是在
上的依测度Cauchy列,则在
上存在几乎处处有限的可测函数
,使得
上依测度收敛于

证明

注意在本定理的证明过程中,我们会频繁使用到抠装零测集技巧。

注意到

上几乎处处有限的可测函数。我们设
上处处有限,且
,在这里
。我们设
,显然

是在
上的依测度Cauchy列,因此对任意正整数
,存在一个
,当
时有
,即

在这里,关于序列

,可以取成满足以下条件的样子:

,在这里,

显然,,

。现在研究
的上限集
。我们有
,因此
,即
,在这里需注意

如果

,则存在
。则对任何
,我们有
。由此可知,当
时,有
。这说明级数
上绝对收敛到实数值,因此
上收敛到实数值,因此序列
上收敛到实数值。因此,
上是几乎处处收敛的,不妨设其,几乎处处收敛到
,显然
是几乎处处有限的可测函数。(注意
上取值为序列
上收敛到的实数值,在
上可以任意取值 。)

我们固定一个

。下面说明
上一致收敛到
。任取一个
,那么
,也就是对任意
,我们有
。任取一个
,存在正整数
,当
时,对于所有的
,我们有:

因此,

上一致收敛到

上几乎处处有限的可测函数。对任给的
,我们可以取
,然后我们令
,则有
上一致收敛到
。因此,根据“定理5”,
上依测度收敛于

任取一个

因为

是在
上的依测度Cauchy列,因此

又因为,

上依测度收敛于
,因此

因此,我们得到了

因此,

上依测度收敛于

证毕

引理8
上依测度收敛于
,则
上依测度Cauchy列。

证明

根据依测度收敛的定义我们知道

上几乎处处有限的可测函数。我们设
上处处有限,且
,在这里
。我们设
上处处有限,且
。我们设
,显然

任取一个

因为

上依测度收敛于
,所以
以及
。因此

所以,

上依测度Cauchy列。

证毕

定理9 Riesz定理
上依测度收敛于
,则存在子列
,使得
上几乎处处收敛到

证明

上依测度收敛于
。根据“引理8”,
上是依测度Cauchy列。参照“定理7”的证明过程,我们知道存在子列
,使得得
上几乎处处收敛到
,并且,
上依测度收敛于
。显然,
上依测度收敛于
。根据“定理3”,
上是几乎处处相等的。

因为

上几乎处处收敛到
,所以在
,且
。因为
上是几乎处处相等,所以在
,且
。因此在
上,我们有
,在这里
。所以
上几乎处处收敛到

证毕

尾声

要注意“定理7”的证明绝对是本文的主菜,里面补充了很多原文中略写内容,尤其是证明

上一致收敛到
。这段证明也把抠装零测集技巧用到了极致。
显式地在证明中写出抠装零测集的过程的好处是会让你的证明看起来自然顺畅,在看证明过程中不需要因为省略抠装而担上太多逻辑上的负担。但回过头来看,原书略去“抠装”这个过程,也是没有问题的,因为确实零测集掀不起风浪,不会破坏结果。但是这种是似而非的话,出自一个大佬口中,我是信的,但是作为初学者,一定要经过我这样子的细致审查,再说,哦,那确实是可以略写,这样才算掌握。注意一定要有一个从简入繁,再化繁为简的过程才算是掌握。因为老是靠感觉而写不出严谨细致推导,是要出大问题的。

如果你真的坚持看到这里,我在这里首先感谢你(其实作者这么啰嗦地写到这里自己都已经快爆炸了),因此如果你对于本文的内容有任何有疑问的地方,作者会非常热心地回答。另外其实我本人对本文细节中的某些更加细节的东西的严格表述还是有一些小疑问的,希望路过的大佬留个名,可以探讨探讨。

最后本文感谢在QQ和微信上和我诸多讨论的老师同学们了。希望可以借此机会通过本文认识更多的新的老师同学。

永远对未知保持好奇,对学问保持虔诚。绝不糊弄了事,如果还是一知半解,那就停下脚步,直到弄懂!

数学是我永远的信仰,是我永远仰望的存在!

鞠躬!

THE END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值