实变函数自制笔记7:可测函数的收敛定理

1、实变函数分析语言和集合语言间的转换:

  • 背景:已知f_{n}\left ( x \right )是可测集E\subset \mathbb{R}^{n}上的可测函数列,f\left ( x \right )E上的可测函数,而E有零测子集E_{0}\subset E,m\left ( E_{0} \right )=0;让f_{n}\left ( x \right )E或者上一致收敛是不可能的,我们只能考察f_{n}\left ( x \right )是否存在一致收敛的子列,或者将f_{n}\left ( x \right )限制在一个比EE-E_0稍小的集合上使得f_{n}\left ( x \right )在这个集合上一致收敛; 这里我们先从E里不收敛至f\left ( x \right )的点集E_1=\left \{ x\mid x\in E,f_n\left ( x \right )\nrightarrow f\left ( x \right ) \right \}开始着手;
  • f_{n}\left ( x \right )不收敛于f\left ( x \right )的一系列语言描述:
  1. 分析语言:f_n\left ( x \right )\nrightarrow f\left ( x \right )\Leftrightarrow \exists \varepsilon _0> 0,\forall N\in \mathbb{N},\exists n\geqslant N,\left | f_n\left ( x \right ) -f\left ( x \right )\right |> \varepsilon _0
  2. 集合语言:E_1=\bigcup_{k=1}^{\infty }\bigcap_{N=1}^{\infty }\bigcup_{n=N}^{\infty }\left \{ x\mid x\in E, \left | f_n\left ( x \right ) -f\left ( x \right )\right |\geqslant \frac{1}{k}\right \}=\left \{ x\mid x\in E,f_n\left ( x \right )\nrightarrow f\left ( x \right ) \right \}
  • 解读:对于分析语言,对不同的x\in E_1n,\varepsilon _0可能各不相同,这一点在集合语言里就得以体现出来了:\exists n\geqslant N对应于\bigcup_{n=N}^{\infty }\left \{ x\mid x\in E, \left | f_n\left ( x \right ) -f\left ( x \right )\right |\geqslant \varepsilon _0\right \}\forall N\in \mathbb{N}对应\bigcap_{N=1}^{\infty }\bigcup_{n=N}^{\infty }\left \{ x\mid x\in E, \left | f_n\left ( x \right ) -f\left ( x \right )\right |\geqslant \varepsilon _0\right \}这个集合把N,n,\varepsilon _0的关系均反映出来了;而对于不同的x\varepsilon _0可能是不同的,则构造出这样的集合\bigcup_{k=1}^{\infty }\bigcap_{N=1}^{\infty }\bigcup_{n=N}^{\infty }\left \{ x\mid x\in E, \left | f_n\left ( x \right ) -f\left ( x \right )\right |\geqslant \varepsilon _0\right \},这个集合表示了所有不收敛的点构成的集合;由于\varepsilon _0可能有不可数多个,为了保证不可数多个可测集的并集还是可测的,需要将集合的并运算可数化(\forall \varepsilon _0> 0,\exists k\in \mathbb{N},\varepsilon _0> \frac{1}{k},则当\left | f_n\left ( x \right ) -f\left ( x \right )\right |\geqslant \varepsilon _0时,有\left | f_n\left ( x \right ) -f\left ( x \right )\right |\geqslant \frac{1}{k}

2、函数的逼近相关概念:

  • 背景:函数逼近常常是用我们认为好(或者说简单,易于理解)的函数去逼近我们认为不好(或者说复杂,难于理解)的函数,通常我们采用不同的收敛意义对不好的函数进行逼近,因此函数逼近可以相应的有很多含义。首先,我们将所有能用得到的函数列的收敛意义的概念进行整理:
  • 收敛\lim_{n\rightarrow \infty }f_{n}\left ( x \right )=f\left ( x \right ),x\in D/f_{n}\left ( x \right )\rightarrow f\left ( x \right )\left ( n\rightarrow \infty \right ),x\in D对于固定的x\in D\forall \varepsilon > 0\exists N> 0(或者称N\left ( x,\varepsilon \right )> 0),当n> N时,有\left | f_{n}\left ( x \right )-f\left ( x \right ) \right |< \varepsilon,这里f\left ( x \right )称为极限函数;
  • 逐点收敛:\forall \varepsilon > 0\forall x\in D\exists N> 0(或者称N\left (x \right )> 0), 当n> N时,有\left | f_{n}\left ( x \right )-f\left ( x \right ) \right |< \varepsilon,这里f\left ( x \right )称为极限函数;此时函数列的逐点收敛和函数列的收敛是一个含义; 

  • 一致收敛f_{n}\left ( x \right )\rightrightarrows f\left ( x \right )\left ( n\rightarrow \infty \right ),x\in D\forall \varepsilon > 0\exists N> 0(或者称N\left ( \varepsilon \right )> 0),当n> N时,\forall x\in D,有\left | f_{n}\left ( x \right )-f\left ( x \right ) \right |< \varepsilon,这里f\left ( x \right )称为极限函数;同时额外给出其他两个常见的判别法:
    • 柯西(Cauchy)准则: \forall \varepsilon > 0\exists N> 0,当m,n> N时, ,\forall x\in D,有\left | f_{n}\left ( x \right )-f\left ( x \right ) \right |< \varepsilon\Leftrightarrowf_{n}\left ( x \right )在定义域D上一致收敛到f\left ( x \right ); 
    • 余项准则:\lim_{n\rightarrow \infty }\sup_{x\in D}\left |f_{n}\left ( x \right )-f\left ( x \right ) \right |=0\Leftrightarrowf_{n}\left ( x \right )在定义域D上一致收敛到f\left ( x \right ); 
  • 几乎处处收敛f_{k}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E已知f\left ( x \right ),f_{1}\left ( x \right ),f_{2}\left ( x \right ),\cdots ,f_{k}\left ( x \right ),\cdotsE\subset \mathbb{R}^{n}上的广义实值函数,若满足\exists E_{0}\subset E,m\left ( E_{0} \right )=0\forall x\in E-E_{0},\lim_{k\rightarrow \infty }f_{k}\left ( x \right )=f\left ( x \right )两个条件,则称\left \{ f_{k}\left ( x \right ) \right \}E上是几乎处处收敛f\left ( x \right )

  • 每个收敛性的关系:对于逐点收敛和一致收敛,逐点收敛是指在每个点,函数列f_{n}\left ( x \right )都收敛到f\left ( x \right ),但是不同点收敛快慢可能不一样;而一致收敛是指对所有定义域D中的xf_{n}\left ( x \right )收敛到f\left ( x \right )有几乎相同的收敛速度;那么十分明显的是,一致收敛能推出收敛/逐点收敛/处处收敛,而处处收敛能推出几乎处处收敛,所以收敛性的强度比较是:一致收敛>收敛/逐点收敛/处处收敛>几乎处处收敛;

3、叶戈罗夫(Его́ров,亦称叶果洛夫)定理:

  • 背景:我们知道一致收敛的强度是要大于几乎处处收敛的,所以利用简单的几乎处处收敛是推不出一致收敛的,即便函数列f_{n}\left ( x \right )是定义于某个区间上的连续函数列也不行。那能否额外再给出一定的条件,在已知几乎处处收敛的前提下推出一致收敛?比如说f_n\left ( x \right )=x^{n}\left ( 0,1 \right )上处处收敛到0,但不一致收敛到0,原因就在于当我们取x=1-\frac{1}{n}的时候,\left | f_{n}\left ( x \right )-f\left ( x \right ) \right |=\left | 1-\frac{1}{n} \right |\nrightarrow 0,而将1处的一个小邻域挖去便可让f_{n}\left ( x \right )\left ( 0,1-\delta \right ]\left ( 0< \delta < 1 \right )一致收敛到0,这给了我们由几乎处处收敛推出一致收敛的思路;
  • 叶戈罗夫定理:已知f\left ( x \right ),f_{1}\left ( x \right ),f_{2}\left ( x \right ),\cdots ,f_{k}\left ( x \right ),\cdots为可测集E\subset \mathbb{R}^{n}上几乎处处有限(即\left | f\left ( x \right ) \right |< \infty ,\left | f_i\left ( x \right ) \right |< \infty,\textup{a.e. }x\in E)的可测函数,且m\left ( E \right )< +\infty,若f_{k}\left ( x \right )几乎处处收敛于f\left ( x \right )(即f_{k}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E),则:\forall \delta > 0\exists可测子集E_\delta \subset Em\left ( E_\delta \right )< \delta,使得f_{k}\left ( x \right )E-E_\delta上一致收敛于f\left ( x \right )(即f_{k}\left ( x \right )\rightrightarrows f\left ( x \right )\left ( k\rightarrow \infty \right ),x\in E-E_\delta);
  • 注意事项:
  1. 叶戈罗夫定理里的m\left ( E \right )< +\infty条件不能去掉,比如f_n\left ( x \right )=\left\{\begin{matrix} 1, &x> n \\ 0, &0\leqslant x< n \end{matrix}\right.;假如说条件去掉叶戈罗夫定理成立,这里\exists E_\delta \subset E= \left [ 0,+\infty \right ),m\left ( E_\delta \right )< \delta,然后有f_{n}\left ( x \right )\rightrightarrows f\left ( x \right )=0\left ( n\rightarrow \infty \right ),x\in E-E_\delta;问题在于,是不是\forall n> 0,E-E_\delta \subset \left [ 0,n \right ]?并不是,因为m\left ( E \right )=+\inftym\left ( E-E_\delta \right )=+\infty,此时任何一个有限的区间都无法包含E-E_\delta,即不满足E-E_\delta \subset \left [ 0,n \right ]
  2. 对于m\left ( E \right )=+\infty的情况,结论这样描述:\forall M> 0\exists E_M\subset Em\left ( E_M \right )> M,使得f_{k}\left ( x \right )E_M上一致收敛于f\left ( x \right )(即f_{k}\left ( x \right )\rightrightarrows f\left ( x \right )\left ( k\rightarrow \infty \right ),x\in E_M);
  3.  已知f\left ( x \right ),f_{1}\left ( x \right ),f_{2}\left ( x \right ),\cdots ,f_{k}\left ( x \right ),\cdots为可测集E\subset \mathbb{R}^{n}上几乎处处有限(即\left | f\left ( x \right ) \right |< \infty ,\left | f_i\left ( x \right ) \right |< \infty,\textup{a.e. }x\in E)的可测函数,且 \left \{ f_{k}\left ( x \right ) \right \}E上是几乎处处收敛于f\left ( x \right )的(f_{k}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E),则:\forall \delta >0\exists可测子集E_i\subset Em\left ( E-\bigcup_{i=1}^{\infty }E_i \right )=0,使得f_{k}\left ( x \right )在每个E_i上一致收敛于f\left ( x \right )(即f_{k}\left ( x \right )\rightrightarrows f\left ( x \right )\left ( k\rightarrow \infty \right ),x\in E_i);

4、卢津(Лузин,亦称鲁津)定理:

  • 背景:可测函数作为一般可测集上的函数,其结构比较复杂,故我们想知道能否用一些简单的函数(比如连续函数、初等函数等)来描述这类函数,这对于了解可测函数的结构及性质比较重要;而由于可测函数定义在一般的可测集上,故连续函数的概念需要推广;
  • f\left ( x \right )相对于点集E连续:已知E\subset \mathbb{R}^n为点集,f\left ( x \right )为定义在E上的函数,其中x_0\in E;若\forall \varepsilon > 0\exists \delta > 0,当x\in E\cap O\left ( x_0,\delta \right )时,有\left | f\left ( x \right )-f\left ( x_0 \right ) \right |< \varepsilon,则f\left ( x \right )x_0点处相对于点集E连续;由此可知,若x_0E的孤立点,f\left ( x \right )一定在x_0点处相对于点集E连续;
  • f\left ( x \right )在点集E上处处连续/为连续函数:\forall x\in E,在x点相对于E连续,则f\left ( x \right )E上处处连续/为连续函数;由其定义可知,可测集上任一连续函数都可用简单函数来逼近,则连续函数一定是可测函数;
  • f\left ( x \right )在点集E上几乎处处连续:\exists E_{0}\subset E,m\left ( E_{0} \right )=0\forall x\in E-E_0,在x点相对于E连续,则f\left ( x \right )E上几乎处处连续;
  • f\left ( x \right )在闭集E上连续:已知F\subset \mathbb{R}^n为闭集,f_n\left ( x \right )F上的连续函数列,且有f_n\left ( x \right )\rightrightarrows f\left ( x \right ),x\in F,则f\left ( x \right )F上连续;
  • 卢津定理的第一形式:若f\left ( x \right )为有限测度集E\subset \mathbb{R}^{n}上的几乎处处有限的可测函数,则\forall \varepsilon > 0\exists闭集F\subset E,有m\left ( E-F \right )<\varepsilon,且有f\left ( x \right )F上的连续函数;
  • 卢津定理的第二形式: 若f\left ( x \right )为有限可测集E\subset \mathbb{R}上的几乎处处有限的可测函数,则\forall \varepsilon > 0\exists闭集F\subset E以及连续函数g\left ( x \right ),x\in \mathbb{R},有m\left ( E-F \right )<\varepsilon,且有\forall x\in F,f\left ( x \right )=g\left ( x \right );此外,若\forall x\in E,\left | f\left ( x \right ) \right |\leqslant M\left ( M>0 \right ),则\forall x\in \mathbb{R},\left | g\left ( x \right ) \right |\leqslant M
  • 卢津定理的第三形式: 若f\left ( x \right )E\subset \mathbb{R}^{n}上的可测函数, 则\forall \varepsilon > 0\exists连续函数g\left ( x \right ),x\in \mathbb{R},有m\left \{ x\mid x\in E,f\left ( x \right )\neq g\left ( x \right ) \right \}< \varepsilon

5、依测度收敛/概收敛:

  • 背景:根据卢津定理,任意可测函数都可以用连续函数在某种意义下进行逼近,或者直接看卢津定理的第三形式;由卢津定理第三形式得出的表达式,我们很自然的会想到:\forall n,有m\left \{ x\mid x\in E,f\left ( x \right )\neq g\left ( x \right ) \right \}=m\left \{x\mid x\in E,\left |f\left ( x \right )- g\left ( x \right ) \right |\geqslant \frac{1}{n} \right \}< \varepsilon,那么\forall \delta > 0,进一步就有m\left \{x\mid x\in E,\left |f\left ( x \right )- g\left ( x \right ) \right |\geqslant \delta \right \}< \varepsilon取单调\rightarrow 0的正数序列\varepsilon _n,则:\exists连续函数g_n\left ( x \right ),x\in \mathbb{R},有m\left \{x\mid x\in E,\left |f\left ( x \right )- g_n\left ( x \right ) \right |\geqslant \delta \right \}< \varepsilon_n\rightarrow 0\left ( n\rightarrow \infty \right ),这样就得到了与之前几乎处处收敛不同的概念;
  • f_n\left ( x \right )E上依测度收敛/概收敛f_n\Rightarrow f已知f\left ( x \right ),f_{1}\left ( x \right ),f_{2}\left ( x \right ),\cdots ,f_{k}\left ( x \right ),\cdots为可测集E\subset \mathbb{R}^{n}上几乎处处有限(即\left | f\left ( x \right ) \right |< \infty ,\left | f_i\left ( x \right ) \right |< \infty,\textup{a.e. }x\in E)的可测函数,若\forall \varepsilon > 0,有\lim_{n\rightarrow \infty }m\left \{x\mid x\in E,\left |f_n\left ( x \right )- f\left ( x \right ) \right |\geqslant \varepsilon \right \}=0,则称在f_n\left ( x \right )E上依测度收敛/概收敛到f\left ( x \right )
  • 依测度收敛和几乎处处收敛的关系:依测度收敛要求的是点集里不收敛点的总数少到几乎没有,而几乎处处收敛则需要排除出一个零测集,这个零测集上的点个数不仅要少到几乎没有而且这个集合本身还得是固定的,看起来几乎处处收敛的要求要比依测度收敛高一些,即几乎处处收敛强于依测度收敛;
  • 依测度收敛的相关定理:
  1. 已知f_n\left ( x \right ),f\left ( x \right ),g\left ( x \right )E上的可测函数,\left \{ f_n\left ( x \right )\Rightarrow f\left ( x \right ) \right \},\left \{ f_n\left ( x \right )\Rightarrow g\left ( x \right ) \right \}\Rightarrow f\left ( x \right )=g\left ( x \right ),\textup{ a.e.}x\in E(即f\left ( x \right ),g\left ( x \right )对等/几乎处处相等);
  2. 已知f\left ( x \right ),f_{1}\left ( x \right ),f_{2}\left ( x \right ),\cdots ,f_{k}\left ( x \right ),\cdots为有限测度可测集E\subset \mathbb{R}^{n}\left (mE< \infty \right )上几乎处处有限(即\left | f\left ( x \right ) \right |< \infty ,\left | f_i\left ( x \right ) \right |< \infty,\textup{a.e. }x\in E)的可测函数,则f_{n}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E\Rightarrow \left \{ f_n\Rightarrow f \right \}(即几乎处处收敛蕴含依测度收敛,也就是说,在可测集测度有限的前提下,几乎处处收敛可以推出依测度收敛);

  3. 已知f\left ( x \right ),f_{1}\left ( x \right ),f_{2}\left ( x \right ),\cdots ,f_{k}\left ( x \right ),\cdotsE\subset \mathbb{R}^{n}上几乎处处有限(即\left | f\left ( x \right ) \right |< \infty ,\left | f_i\left ( x \right ) \right |< \infty,\textup{a.e. }x\in E)的可测函数,若\forall \delta > 0\exists E_\delta \subset E使得m\left ( E_\delta \right )< \delta,同时f_k\left ( x \right ) \rightrightarrows f\left ( x \right ),x\in E-E_\delta(一致收敛),则有f_k\left ( x \right )\Rightarrow f\left ( x \right ),x\in E(依测度收敛);若mE< \infty,则f_{k}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E(几乎处处收敛);

  4. 里斯(Riesz)定理:已知f_n\left ( x \right ),f\left ( x \right )E上的可测函数,若f_n\left ( x \right )\Rightarrow f\left ( x \right ),则\exists函数列的子列\left \{ f_{n_{i}}\left ( x \right ) \right \},有f_{n_{i}}\left ( x \right )\rightarrow f\left ( x \right ),\textup{a.e. }x\in E

部分参考资料:

科学网—说课(6)(从逐点收敛到一致收敛)--实变函数 - 曹广福的博文 (sciencenet.cn)

科学网—说课(7)(叶果洛夫定理的威力)—实变函数 - 曹广福的博文 (sciencenet.cn)

科学网—说课(8)(依测度(概率)收敛)--实变函数 - 曹广福的博文 (sciencenet.cn)

几乎处处收敛和依测度收敛的区别是什么呢? - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值