r语言arima_R时间序列分析学习笔记(二十四)—— ARIMA建模和模拟(十六)

这篇博客介绍了如何使用R语言进行ARIMA建模和模拟,特别是通过Levinson递推算法计算平稳时间序列的一步预测系数和误差方差。内容包括对平稳序列的预测方法、程序实现以及周期图计算,是R语言时间序列分析系列笔记的第廿四篇。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本笔记中原始数据及代码均来源于李东风先生的R语言教程,在此对李东风先生的无私分享表示感谢。

对平稳列, 已知自协方差列时用Levinson递推计算逐个一步预报系数(Y-W系数)和一步预测误差方差。 输入gams[1:n] 为γk,k=0,1,...,n-1。 输出是对Y1,Y2,...,Yn做滚动向前一步预报所需的系数和均方误差。 结果中元素coef.YW是(n-1)×(n-1)矩阵, 第k行的1:k元素为ak1,ak2,...,akk , 用来预报Yk+1:

7924ee09090ac1273108d71b25bf8396.png

结果中sigmasq是长度为n的向量, 保存预报Y1,Y2,...,Yn的一步预报均方误差。

  1. Levinson.coef function(gams){
  2. n ## ayw保存Y-W系数a[i,j], i=1,2,\dots,n-1, j=1,2,\dots,i ayw 0, n ## ss保存一步预报误差方差 ss ss[1] 0+ ayw[1,1] 1+ ss[2] 1] * ( if(n>2) for(k in 1:(n-2)){
  3. ## 用Y_1, \dots, Y_{k+1}预报Y_{k+2}的系数 ayw[k+1,k+1] 1)+ ayw
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

举报

选择你想要举报的内容(必选)
  • 内容涉黄
  • 政治相关
  • 内容抄袭
  • 涉嫌广告
  • 内容侵权
  • 侮辱谩骂
  • 样式问题
  • 其他
点击体验
DeepSeekR1满血版
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回顶部