rtb中的win_RTB竞价策略学习

本文深入探讨了Real-Time Bidding (RTB) 中的竞价策略,包括Bid Landscape Forecasting的原理和常见模型,如Tree-based log-normal model、censored linear regression和survival model。接着,介绍了竞价策略优化,特别是单广告计划和预算约束下的bid optimisation,解析了线性出价和真话实说竞价策略。RTB的关键在于实时预估收益和成本,以做出最佳出价决策。
摘要由CSDN通过智能技术生成

49b6a43e2c24672b536fc9394a336ee0.png

背景

近一年的工作基本是围绕着广告ctr/cvr模型优化展开的,但是对竞价广告整体框架还是缺乏了解,最近准备学习一下RTB相关的内容,笔记主要围绕着Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting 这篇文章学习

Bid Landscape Forecasting

在RTB中,作为广告主(或者DSP方)而言,关键问题其实是2个,一个是是否应该出价,第二个是应该出多少价,对于第一个问题,一般可以根据广告素材的预估ctr/cvr等判断预期收益决定,对于第二个问题则比较复杂一点;因为在RTB中,只有竞价成功了才能知道真实的计费是多少(对于一价而言就是bid,对于二价而言则需要看其他的报价),由于在每次报价之前不知道其他的报价,因此需要根据历史的一些统计经验值或者模型来预估本次出价,这个就是bid landscape forcasting.

  1. 了解几个基本的概念:

winning probability: 给定出价

和广告特征
单次请求赢得展示的胜率

c0d0592f9d2b02ff61e3d8d00e208e53.png

假设我们已经知道市场上出价z的分布

,那么胜率可以描述为:

a9972b3e208228ce0ded223bba41b8b1.png

2. 几种常见的bid landscape forecasting

  • Tree-based log-normal model

这种方法来自Yahoo的一篇文章Bid Landscape Forecasting in Online Ad Exchange Marketplace,方法是对于adset级别的广告素材,先将历史统计的竞价信息按照特征树的方式先做一个树路径划分,每个树的路径的叶子节点值是match这个特征路径的bid,文章对这种树结构做了一个优化:对于不存在的节点将以*补充,如下图所示:

251c8bd1ccaed17ca2dfff65eae3103a.png

特征树划分好之后,使用GBDT去拟合历史报价,从而学习到每条路径的预估bid值,当一个新的request来的时候,则可以根据match到路径的预估值和历史报价进行本次报价预估均值和标准差。在获取到每个adset级别的均值

和标准差
之后,文章假设每个adset的bid分布是对数正态分布:

1d61ba31cc0ca954dfcdb548089561a4.png

可以求解到

897120d11065efcc446d95c57a305d00.png

对于campaign级别的竞价,paper假设一个campaign的bid是这个campaign下面每个adset的混合分布:

25e93a314ed00edebb798357272469b2.png

其中

21b897599737faabf9891fad89500798.png
  • censored linear regression

线性拟合方法就比较简单,对于广告素材

,使用一个参数
来拟合出价bid:
, Pre- dicting winning price in real time bidding with censored data 这篇paper用下面的似然函数来建模:

510b9ce57ed4ace7a8be41c47765559d.png

本质上是对于win的事件,让

尽量去拟合bid,对于lose的事件,让
尽量出价比bid高点
  • survival model

survival model是一种基于统计的预估出价(二价)分布模型,实现步骤如下

  1. 将所有出价历史按照bid从小到大排序成
    ,其中
    是第i次的出价,
    表示是否赢得此次出价,
    表示本次胜出的价格
  2. 将上述的数据按照bid从小到大转换成
    形式,其中dj表示胜出价为
    胜出的次数,
    表示出价为
    不能胜出的次数,以下面示例图为例,当计算
    =3的时候,那么
    =1(wining_prirce为
    的胜出次数),
    为4(出价为
    时候失败的次数)。本质上计算的是当bid增加一块钱(假设单位是元)胜出的概率为:
    ,对应的lose概率为
  3. 对于出价为b_x,loss的概率为
    ,win的概率为

13a9db1a6b6bde068341d46db32b6a2c.png
survival model示例

竞价策略优化

竞价策略主要针对广告需求方,根据每次请求的context(广告素材、用户行为等)判断需不需要出价以及出多少价,主要流程可以用下图描述:

721e4c8361a69eee26b4369abb1f29ab.png

和搜索广告不同的是,RTB是针对每次的展示竞价,而不是针对搜索关键词出价,因此RTB对广告主(或者DSP)来说,需要更实时且精准的预估.

RTB竞价策略通常包括两个部分:Utility Estimation和Cost Estimation。Utility Estimation一般指赢得这次展示的期望收益,比如点击率/转换率等;Cost Estimation则指的是赢得此次竞价需要的成本,可以用下图描述:

fb4bc05cc13e6f8653956b10619c7573.png

单广告计划bid optimisation

  1. 了解几个概念
  • 给定市场出价概率密度分布Pz(z)和出价b,对应的胜率为
  • 广告的预期回报为
    ,
    依赖具体的广告策略,如果广告希望回报是点击数,那么
    ;如果广告希望回报是利润,每次点击的收益是v,那么
  • cost(如果胜出了,需要花费的成本):
  • 对于一价广告,
  • 对于二价广告,
  • T: 广告计划的规则和生命周期决定的拍卖量
  • B:广告计划的预算budget

2. Truth-telling bidding

true-telling bidding是只考虑竞价回报,而不考虑预算的场景,期望收益为

这个相当于是Lagrange无约束优化问题,直接对出价b(.)求导

(1)式对

求导得到:
由此得到出价

Truth-telling bidding仅适用于不限budget以及不限拍卖量的情况

3. Linear Bidding

线性出价则简单的多,基本公式是

其中参数

是根据训练数据训练出来的值

4. 预算约束下的bidding

在拍卖量T和预算B受约束的情况下,优化目标变成:

st:

显然,这是一个等式约束条件下lagrange优化问题,自然的,引入lagrange算子

等价于优化

求解过程:

令b(r)求导值为0可得:

令对

求导值为0可得:

4.1 对于一价场景

假设初始z服从

这一分布,

同时假设

服从均匀分布

带入4式和5式:

由此求得:

同理,如果

服从
的分布,可最终得到

4.2 对于二价场景

和上面相似的求解方法可以得到:

如果

服从
的分布,同时假设
服从均匀分布

类似的可以求解:

多广告计划bid optimisation (待续)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值