Beyond Short Snippets: Deep Networks for Video Classification
摘要
卷积神经网络(CNNs)在图像识别领域得到了广泛的应用,在识别、检测、分割和检索等方面取得了最新的研究成果。在这项工作中,我们提出并评估了几种深度神经网络架构,以在比先前尝试更长的时间内组合视频中的图像信息。
我们提出了两种处理全长视频的方法。
第一种方法探索了各种卷积时间特征池体系结构,研究了在使CNN适应此任务时需要做出的各种设计选择。
第二种方法将视频显式地建模为有序的帧序列。为此,我们采用了一种递归神经网络,该网络使用与底层CNN输出相连接的长短期记忆(LSTM)细胞。
我们的最佳网络在Sports 1M数据集(73.1%对60.9%)和UCF-101数据集(88.6%对88.0%)上的性能比以前公布的结果有了显著的提高,并且没有额外的光流信息(82.6%对73.0%)。
为了在保持低计算量的同时学习视频的全局描述,我们建议每秒只处理一帧。在此帧速率下,隐式运动信息丢失。为了补偿,在[19]之后,我们将显式运动信息合并为在相邻帧上计算的光流图像的形式。因此,光流允许我们在捕获全局视频信息的同时保留运动信息的好处(通常通过高fps采样实现)。我们的贡献可以总结如下: