均值滤波器3*3模板_引导滤波器(前言)

文章介绍了双边滤波器的概念和边缘保持性,引出引导滤波器作为替代方案的原因。引导滤波器由He Kaiming提出,用于解决双边滤波器的复杂性和光晕效应,通过线性模型和均值滤波实现边缘增强并减少梯度反转。文章探讨了算法复杂度、存储代价和硬件实现,提到了一些优化方法。
摘要由CSDN通过智能技术生成

因为双边滤波器的原理很好理解(原来的空间滤波器只有spatial kernel,双边滤波器在原有基础上增加了range kernel),我也就没有太多赘述。但是双边滤波器带出了一个很新的概念,就是边缘保持性(edge-preserving)。

边缘保持性说的就是图像中梯度大的地方滤波的时候会比梯度小的地方滤掉的更多,传统滤波器往往也能滤掉边缘,但是滤波方法本身具有无差异性,黑猫白猫一起抓,如果想凸显边缘,一般滤波器就会无所建树。在红外DDE课题应用中,增强图像就是对主要边缘进行增强实现细节的增强,其做法是对图像I滤波后,得到滤波后图像B,I-B得到边缘图层D,对D进行拉伸(stretch,一般是线性的),一般滤波器拉伸后,所有的边缘都会增强,没有主次之分,就会与初衷相违背。

回到双边滤波器上来,显然就会很容易的实现主要边缘的增强。虽然有这种好处,但是在实现上,双边滤波器的复杂度相当之高,如果借用一些近似的方案、甚至查找表,但是这种做法带来了硬件的高代价——存储代价,带宽代价。与其在滤波器的改进上做手脚,不如就找种跟他有相同作用的滤波器代替一下——引导滤波器应运而生。

引导滤波器最开始是由He Kaiming提出的,他最开始做暗通道去雾[1],但是发现估计的投射模型t(x)会产生光晕,作者利用soft matting的方式将t(x) refine了。这个soft matting的做法是将扣得的轮廓图,作为输入图像(黑白单通道),原图作为引导图像(彩色3通道),进行联合双边滤波(Jo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值