在Transformer模型中,QKV分别代表查询(Query)、键(Key)和值(Value)。这三个概念是自注意力机制的核心部分,用于计算注意力权重并实现信息的传递和处理。
-
查询(Query) :查询向量帮助模型提出问题,即模型希望关注或获取的信息。在自注意制力机中,查询向量用于与键向量进行相似度计算,以确定输入序列中不同元素之间的关联程度。
-
键(Key) :键向量帮助模型找到问题的关键内容。它们与查询向量进行点积运算,以计算出注意力得分,这些得分反映了
在Transformer模型中,QKV分别代表查询(Query)、键(Key)和值(Value)。这三个概念是自注意力机制的核心部分,用于计算注意力权重并实现信息的传递和处理。
查询(Query) :查询向量帮助模型提出问题,即模型希望关注或获取的信息。在自注意制力机中,查询向量用于与键向量进行相似度计算,以确定输入序列中不同元素之间的关联程度。
键(Key) :键向量帮助模型找到问题的关键内容。它们与查询向量进行点积运算,以计算出注意力得分,这些得分反映了