局部呈交界性改变小于10_【“心电图解读”讲座系列】第 10 讲:心动过速心电图...

本文为“心电图解读”讲座第10讲,介绍心动过速心电图。阐述了心动过速分类,以实例展示通过心电图诊断阵发性室上性心动过速,还介绍用相减法确定P′波及分析其与QRS波群关系来判断室上速类型,提及宽QRS波心动过速与室速的鉴别方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

009b9d88a909f91b9ba7f997126ccd52.png

“心电图解读”讲座系列第10讲

心动过速心电图

贾 忠 伟

航天中心医院

心电图是重要的心脏检查方法之一,对于心律失常、冠心病、洋地黄中毒及电解质紊乱等疾病的诊断有很大价值。本刊特邀著名心电生理学专家、北京大学人民医院郭继鸿、许原教授组织撰写了“心电图解读”讲座,对心电原理、读图方法及典型心电图进行诠释,图文并茂,易于辨认和理解,希望对广大读者的临床诊断工作有所帮助。

图1 为1 例男性患者在安静情况下(图1A) 和心慌发作时(图1B) 记录的12 导联心电图。该患者平时体健,近3 年来反复发作心慌,每次持续数小时,自行终止。每次的发作和停止均具有突然性。根据心电图和临床的特点,我们应该考虑什么诊断。

7045de99dd3d69d0177762be0731e760.png

图1A 中,Ⅱ导联P 波直立,aVR 导联倒置,PR 间期0. 20s ,心率110 次/ 分(bpm) ,QRS - T 波形态正常,QRS 波群时限80ms ,据此可以诊断为窦性心动过速。图1B 为病人发作心慌时记录的心电图,心率为140bpm ,在QRS 波群前见不到明显的P 波,QRS 波群的时限为80ms ,为窄QRS 波心动过速。因此应诊断为室上性心动过速。结合病人发病时持续时间较短,发作和终止均呈突发性,因此最后的诊断为阵发性室上性心动过速。

心率超过100 bpm 的心律叫做心动过速,其发生机制包括折返、触发活动和异常自律性增高。心动过速根据其起源的部位可分为室上性心动过速(简称室上速) 和室性心动过速(简称室速) 。室上速是指起源于希氏束或希氏束以上的心动过速,室速则指起源于希氏束以下的心动过速。室上速包括窦性心动过速(多为生理性) 、房性心动过速、房室交界区心动过速(包括房室结折返性心动过速) 、房室折返性心动过速等,如不伴有束支阻滞及旁路前传,均为窄QRS 心动过速。

8a7d16e98a89a8f0b613a252ce2df1e4.png

阵发性室上速是指具有突发突止特点的室上速,其发生机制为折返,常见的类型包括房室结折返性心动过速、房室折返性心动过速、窦房折返性心动过速和房性心动过速,以前两者最多见。房室结折返性心动过速占阵发性室上速的50 %,房室折返性心动过速占40 %,其他占10 %。通过体表心电图,我们不仅可以做出室上速的诊断,多数情况下还对其发生机制或类型做出诊断。

对室上速做出进一步诊断的依据是先确定P(或P′) 波的存在,然后再根据其位置及与QRS 波群的关系进行判断。P 波的确定可用相减法。应用心电图“相减法”时,需要有患者心动过速发作及窦性心律的两份心电图。然后应用心动过速体表心电图某个导联的QRS —T 波减去窦性心律时相同导联的QRS —T 波。相减过程中,先用QRS 波减QRS 波(振幅高低不重要) ,再用T 波减T 波( T 波精确的宽度不重要) ,相减之后观察有无多余的成分或余留波(特别是在ST 段中) 。如果有明显的余留波即为P′波。在本图1B 中,Ⅱ、Ⅲ、aVF 和V4~6导联箭头所指的ST 段起始部相减后出现一个负向成分或余波,在aVR、aVL 和V1 导联,ST 段起始部(箭头所指处) 相减后多出一个正向成分,这个多出的成分即是P′波。应当指出,心电图相减法主要用于鉴别室上速是房室结双径路引起还是预激综合征引起,这种方法对房速没有太大的鉴别意义,因为房速的P′波几乎可以出现在心动过速周期中的各个时期。

在确定了P′波后,下一步需要分析P′波与QRS波群的关系。不同类型或机制的室上速,P′波与QRS波群的关系不同或在心动周期中的位置不同(图2) 。

在阵发性室上速中,房室结折返性心动过速和房室折返性心动过速占90 %,而且P′波几乎都位于心动周期的前50 %。不同的是,在房室结折返性心动过速中,RP′间期(QRS 波群起点至P′波起点的时间) ≤70ms ,而在房室折返性心动过速中,RP′间期> 70ms。

从图1B 中可以看出,RP′间期= 80ms (Ⅱ导联P′波的起点能识别) ,提示房室折返性心动过速。

房室折返性心动过速是由旁道参与的折返性心动过速,又称为预激综合征。这种心动过速的折返环路包括: 心房、房室结、心室及旁道四部分(图3A) ,缺一不可。根据激动折返的方向不同,房室折返性心动过速又可分为顺向型房室折返性心动过速和逆向型房室折返性心动过速,前者是激动经房室结前传(占90 %) , 后者是激动经房室结逆传(占10 %) 。心房与心室激动,心室与心房激动,两者之间的中介途径可以是房室结,也可以是旁路。

图3B显示,当经过食管刺激心房时,第1~3 个心动周期为激动经旁道和房室结同时下传,由于旁道传导得快,因此,图3B 第2 条心电图中前2 个QRS 波群呈预激波形,第3 个为房性早搏,其发生时旁道( K) 仍处于不应期中,因此激动只能通过房室结前传使心室除极,表现为窄QRS 波群。

763658c71028334b08765fab5ec137d2.png

当激动经过心室到达旁道时,旁道已经脱离了不应期,因此,激动经旁道再传回心房,然后激动再次经房室结前传心室时,周而复始,产生了顺向型房室折返性心动过速。此时,逆P′的位置100 %位于两个QRS 波之间,第一个QRS 波距逆P′的间期(R - P′间期) > 70ms。而房室结折返性室上速,折返环位于房室结区,前传多是慢径(少数情况下经快径路前传) ,逆传多是快径(少数情况下为慢径路) ,但折返环路的必须成分都位于房室结区,心房及心室是折返环路反复激动时向上逆传及向下正传的结果(图4A) 。因此,心房波和心室波是房室结的激动同时向两个方向分别传导的结果,此时心房与心室呈分离状态,没有传导与被传导的关系。由于房室结向心房的逆传与向心室的前传速度多数情况下相等,使P′波与QRS 波重叠在一起而不显露(66 %) 。也有相当一部分向心房逆传稍慢,P′波与QRS 波的终末部分重叠而部分显露(30 %) ,此时,RP′间期< 70ms。

还有4 %的情况是向心室前传较快,逆传较慢,使P′波位于心动周期的后50 %中而位于QRS 波群之前(图4B) 。最后一种更少见的情况是激动均通过慢径向前传和逆传产生慢慢型房室结折返性心动过速,使P′波几乎位于心动周期的中央(图4C) 。

有时,室上速呈宽QRS 波心动过速,主要见于室上速合并显性旁道以及心室内差异性传导时,需要与室速鉴别。此时,由于心室存在继发性复极异常,ST段几乎没有平段,因此使通过相减法判断P′波存在困难。应结合临床资料、心动过速心电图的心电轴、QRS 波群(尤其是胸导联) 的形态和时限、有无房室分离等进行综合判断。

7212ae5a20229a5abeacb0d8ac30f77f.png
在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值