tensorflow标准差方差_TensorFlow2.0(8):误差计算——损失函数总结

本文介绍了在 TensorFlow2.0 中如何使用均方差损失函数(MSE)和交叉熵损失函数进行误差计算。通过实例展示了 MLE 的计算方式,并讨论了在不同情况下的应用,如回归问题与分类问题。
摘要由CSDN通过智能技术生成

注:本系列所有博客将持续更新并发布在github上,您可以通过github下载本系列所有文章笔记文件。

1 均方差损失函数:MSE¶

均方误差(Mean Square Error),应该是最常用的误差计算方法了,数学公式为: $$loss = \frac{1}{N}\sum { { {(y - pred)}^2}} $$

其中,$y$是真实值,$pred$是预测值,$N$通常指的是batch_size,也有时候是指特征属性个数。

In [1]:

import tensorflow as tf

y = tf.random.uniform((5,),maxval=5,dtype=tf.int32) # 假设这是真实值

print(y)

y = tf.one_hot(y,depth=5) # 转为热独编码

print(y)

tf.Tensor([2 4 4 0 2], shape=(5,), dtype=int32)

tf.Tensor(

[[0. 0. 1. 0. 0.]

[0. 0. 0. 0. 1.]

[0. 0. 0. 0. 1.]

[1. 0. 0. 0. 0.]

[0. 0. 1. 0. 0.]], shape=(5, 5), dtype=float32)

In [2]:

y

Out[2]:

array([[0., 0., 1., 0., 0.],

[0., 0., 0., 0., 1.],

[0., 0., 0., 0., 1.],

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值