注:本系列所有博客将持续更新并发布在github上,您可以通过github下载本系列所有文章笔记文件。
1 均方差损失函数:MSE¶
均方误差(Mean Square Error),应该是最常用的误差计算方法了,数学公式为: $$loss = \frac{1}{N}\sum { { {(y - pred)}^2}} $$
其中,$y$是真实值,$pred$是预测值,$N$通常指的是batch_size,也有时候是指特征属性个数。
In [1]:
import tensorflow as tf
y = tf.random.uniform((5,),maxval=5,dtype=tf.int32) # 假设这是真实值
print(y)
y = tf.one_hot(y,depth=5) # 转为热独编码
print(y)
tf.Tensor([2 4 4 0 2], shape=(5,), dtype=int32)
tf.Tensor(
[[0. 0. 1. 0. 0.]
[0. 0. 0. 0. 1.]
[0. 0. 0. 0. 1.]
[1. 0. 0. 0. 0.]
[0. 0. 1. 0. 0.]], shape=(5, 5), dtype=float32)
In [2]:
y
Out[2]:
array([[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 1.],
[0., 0., 0., 0., 1.],