卡方检验spss步骤_全流程总结卡方检验,帮你理清分析思路

本文详述卡方检验在SPSS中的应用步骤,包括数据类型、研究目的、数据格式和操作方法。重点讲解交叉卡方检验、卡方拟合优度和配对卡方检验,阐述卡方检验在问卷调查、医学实验中的作用,并提供SPSSAU操作指南链接。

55e44e5a050d3285810eda5877a433a5.png

06536042d49f63f86d92ec47bcf14ee4.png

卡方检验

卡方检验主要用于研究定类与定类数据之间的差异关系。

1. 数据类型

卡方检验要求X、Y项均为定类数据,即数字大小代表分类。

014cb8995cce79e3d9b2eacee43e5d29.png
  • 如果X是定类数据,Y是定量数据,且X组别多于2组,则应该使用方差分析。
  • 如果X是定类数据,Y是定量数据,且X组别仅为两组,则应该使用T检验。

2. 研究目的

v2-42e0713d78ba70bc1a00658027cd5c31_b.jpg

一般使用卡方检验进行分析的目的都是比较差异性。

如现状调查类问卷,以及一般调查问卷中,常使用卡方检验对样本背景信息题(性别、年龄等指标)与核心题项进行交叉分析,来说明样本背景这类指标对核心变量是否存在影响。

除了上述研究场景外,卡方检验还可用于研究配对数据的差异性,比如对同一组患者用两种方法诊断癌症,看两种方法的诊断结果是否有差异,则要使用配对卡方检验

如果研究目的在于分析实际观测的比例与期望比例是否一致。比如实际抽样的男女比例,与预期比例是否存在差异,此时可使用卡方拟合优度

3. 数据格式

定类数据涉及两种格式可供选择:原始格式和加权格式。

如果数据经过了统计整理,则需要整理为加权格式,分析时将频数列放入【加权项】即可,得到的结果与原始数据结果完全一致。

8f657d1063e59c6ecdd019acc21c9308.png

至于加权格式如何录入可以查看我们之前推送的文章:什么时候需要加权数据

4. SPSSAU操作

(1)交叉卡方

36958f69bbad9e9ab8b871c6d6170261.png
SPSSAU-交叉卡方

如上图,分析不同性别的人群,使用理财产品的情况是否有差别。这里Y项也可以放入多个标题,一起分析。

46ebbed55b6c1d56b7dfe1e313cc19f3.png

分析时先看P值情况,P值小于0.05或0.01即说明X与Y之间呈现出显著性,然后可以再进一步比较括号中的百分比,对每一项进行描述。

如果P>0.05了,则代表没有统计学意义,一般就不再进行深入分析。

具体可参考SPSSAU输出的“分析建议”及“智能分析”。

d54b922f501216ebca2a6818a99731d3.png

b301910b41c0974a980efb71c71654a1.png

(2)卡方检验

如果使用加权数据,就要用“实验研究”→“卡方检验”。

如下面例子:研究A、B两种药治疗感冒,两种药的疗效是否有差别?

ef22cd3ce82093fee74879c6f66d03e9.png

放置位置和交叉卡方一样,只是多加了一个加权项。

6e79f399dc51c0b6a47ef343e5790a9d.png

dac00ae9855d27a46adb25b24d3c00a8.png
  • 卡方检验增加了一些过程值的输出,原因在于实验研究中样本个数通常比较少,而默认使用的pearson卡方,要求总样本量n≥40,且所有的期望频数E≥5。
  • 当n≥40且存在任意一个1 ≤E<5,则使用yates校正卡方。
  • 当n<40,或E<1时,则用Fisher卡方。

这一选择过程SPSSAU会自动进行判断,并输出适合的卡方值及结果,直接使用该结果即可。

bac082db306fa47a5407a9ba55b7fd56.png

深入指标反映的是变量之间的相关程度,即在分析结果已经得出P<0.05,两种药物治疗感冒的疗效确实存在显著性差异时,进一步比较两种药品的疗效差异幅度究竟有多大。

SPSSAU提供了五个指标,分别对应不同的情况。可结合给出的”分析建议”进行选择,帮助手册中也有对应说明。

由于篇幅原因,配对卡方与卡方拟合优度的操作说明,就不再展开说明,详细步骤可以查看帮助手册:

卡方拟合优度:

https://spssau.com/front/spssau/helps/medicalmethod/goodnessoffit.html

配对卡方:

https://spssau.com/front/spssau/helps/medicalmethod/pairedchisquare.html

5. 其他说明

多选题卡方检验

​多选题与其他题项的交叉分析也可采用卡方检验,只是SPSSAU将多选题单独设计为一个方法,方法上依然是卡方检验。

9a7725e9a606f17088a1115eb8732582.png

卡方检验的结果显示在左下角,P>0.05代表性别对于理财产品选择并不会呈现出差异性。


以上就是卡方分析的流程梳理。卡方检验无论是在问卷调研或是医学实验中,都是非常实用高效的方法,没有展开说明的部分建议大家查阅SPSSAU帮助手册进行学习。

更多内容登录SPSSAU官网查看:

SPSSAU:方差分析、T检验、卡方分析如何区分?

SPSSAU:全流程总结相关分析

SPSSAU:T检验分析思路完整总结

SPSSAU-在线SPSS分析软件​www.spssau.com?100001000
a9d1c09469b05bc3de37a20d784a817b.png
### 如何在SPSS中执行卡方检验 #### 数据准备 为了进行卡方检验,在SPSS中可以有两种式来组织数据。一种是仅定义一个用于存储实际样本值的变量;另一种则是定义两个变量,其中一个用来存放变量值,另一个则记录对应的观测频数,并将其设置为加权变量。对于后者而言,本案例中的加权变量即为人数组[^1]。 #### 前提条件 值得注意的是,当采用卡方检验时,基于皮尔逊定理的要求,应确保样本量足够大,通常建议不少于30个样本点。此外,还需注意每个单元格内的预期频数不宜过低,以免影响测试的有效性[^2]。 #### 执行过程 具体的操作流程如下所示: 进入`Analyze`菜单下的`Descriptive Statistics`选项里的`Crosstabs...`命令; 在此界面中分别选定行变量(Row(s))与列变量(Column(s)),并点击右侧箭头按钮将它们移入相应的框内; 接着切换至`Statistics...`子对话框勾选`Chi-square`复选框以激活卡方检验功能; 如果存在权重变量,则需要通过`Data`->`Weight Cases...`路径开启权重处理模式,选择`Weight cases by`并将事先设定好的频率变量作为权重依据输入进去; 最后确认无误后单击OK键提交运行请求等待输出结果窗口显示统计报告即可完成整个分析过程[^4]。 ```python # Python伪代码示意如何调用类似的功能接口(并非真实语法) analyze.crosstabs( row_variable="your_row_var", column_variable="your_column_var", statistics={"chi_square": True}, weight_by="frequency_variable" ).execute() ``` #### 结果解释 一旦获得了卡方检验的结果,应当仔细审查显著性水平(p-value),以此判断是否存在统计学意义上的关联性或差异。同时也要关注其他辅助指标如Pearson Chi-Square的具体数值及其自由度(df),从而全面理解两组或多组分类资料之间的关系强度和向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值