为什么需要因果矩阵
当输入变量很多时, 如果对所有的变量都进行收集数据并分
析, 理论上可行, 但
z 成本大:
z 时间长
z 分析复杂
z 而且根本没有必要:
– 根据帕累托原理, 20%关键的少数输入变量引起了80%的问题
在进行量化分析之前需要对输入变量先进行筛选, 要求所使用的工具
z 定性的方法
z 简单快捷
z 准确可靠
因果矩阵被实践证明可以满足以上的要求
什么是因果矩阵
因果矩阵(Cause and Effect Matrix, C&E Matrix)是一个简化的QFD(质量功能展开) 矩阵, 用来按照客户需求的重要性来选择流程的关键输入变量
因果矩阵的输入:
z 客户的要求/CTQ/流程的关键输出变量
z 从流程图找出的,所有可能与关键流程输出变量相关的流程输入变量
z 或从鱼骨图中找出的输入变量
z 按照关键输出对客户的重要程度打分
z 按照关键输入与关键输出的关系打分
因果矩阵的输出
z 经过筛选的潜在的关键输入变量
z 为下一步分析提供输入

因果矩阵的制作流程
从VOC或VOB确定关键的客户需求, 即CTQ(关键质量特性)作为流程的输出
把CTQ排序并给每个输出赋予一个优先因子(1~10)
从流程图(或鱼骨图)中确定所有的工序和输入
评价每个输入对输出的关联性, 赋予一个关联值
z0分:输入变量的变化对输出没有影响
z低分值: 输入变量的变化对输出的影响很小
z高分值: 输入变量的变化对输出的影响很大
把关联值和优先因子交叉相乘,然后对每个输入求和
按照求和分数对变量进行排序
确定潜在的关键输入变量
案例分析–寻找影响面包质量的关键因素
背景
•市场上品牌越来越多,竞争越来越激烈
•消费者的消费档次在不断提升
•近3个月来日销量持续下降(-15%)
•经市场调查顾客减少购买的主要原因是面包的质量!
–膨松度
–质地结构
–气味
–新鲜度
–口感
目标:找出影响面包质量的关键因素并改进,提升面包质量,增加市场竞争力, 增加销售










目的:把顾客的要求和流程输入变量联系起来
•关联评分: 不超过3 个等级(水平)
– 典型的评分等级选择
•关联评分赋值需要严谨, 一般要花较多的时间
–利用历史数据, 最好有量化的依据
–团队讨论, 避免个人行为的偏见
–专家支持, 可靠性高
•一定要明确分值的标准:
–0 = 流程输入和客户要求没有关联
–1 = 流程输入仅轻微地影响客户的要求
–3 = 流程输入对客户的要求影响处于中等水平
–9 = 流程输入对客户的要求有直接且强烈的影响
