本博客仅为作者记笔记之用,不对之处,望见谅,欢迎批评指正。
更多相关博客请查阅:http://blog.csdn.net/weixin_39779106;
如需转载,请附上本文链接:http://blog.csdn.net/weixin_39779106/article/details/79689208
一、摘要
原文摘要 | 翻译 |
---|---|
In this paper, we propose the novel VLocNet++ architecture that attempts to overcome this limitation by simultaneously embedding geometric and semantic knowledge of the world into the pose regression network. | 本文提出了VLocNet框架,通过将几何信息和语义信息嵌入到位姿回归网络来提高整个框架的性能。 |
We adopt a multitask learning approach that exploits the inter-task relationship between learning semantics, regressing 6-DoF global pose and odometry, for the mutual benefit of each of these |