python鱼眼图像识别_一种基于鱼眼摄像头的人脸识别锁以及识别方法与流程

本发明提出一种基于鱼眼摄像头的人脸识别锁,解决不同身高用户识别难题。利用红外感应器检测人脸,鱼眼摄像头大范围拍摄,通过图像预处理、畸变校正和人脸检测识别实现高效解锁,提升用户体验。
摘要由CSDN通过智能技术生成

本发明涉及人脸识别领域,特别涉及一种基于鱼眼摄像头的人脸识别锁。

背景技术:

人脸识别具有用在门锁上存在一些不足。例如,门锁一般装在门上,其高度在安装时已经固定,针对不同身高的用户来说可能造成人脸图像捕捉困难、识别准确率低、识别速度不够快的问题,尤其是儿童放学单独回家时更需要方便快捷地刷脸入户,针对这种需求,提出一种识别范围大的人脸识别锁。

专利人脸识别锁【CN201520587480.6】提出一种在摄像头组件上安装上下转动调节轮,针对不同用户的身高将摄像头旋转调节到适合的角度。这种方法缺点是需要手动调节,不够方便。

故需要一种方便灵活的基于鱼眼摄像头的人脸识别锁。

技术实现要素:

为了解决上述问题,本发明提供一种方便灵活的基于鱼眼摄像头的人脸识别锁。

本发明中的一种基于鱼眼摄像头的人脸识别锁,包括人体感应器、人脸控制系统、鱼眼摄像头、电机和门锁,所述人体感应器连接人脸控制系统,所述人脸控制系统连接鱼眼摄像头,所述人脸控制系统连接电机,所述电机连接门锁;

所述人脸控制系统包括主控制器、图像预处理模块、畸变校正处理模块和人脸检测识别模块,所述主控制器连接图像预处理模块,所述图像预处理模块连接畸变校正处理模块,所述畸变校正处理模块连接人脸检测识别模块,所述人脸检测识别模块连接主控制器。

上述方案中,所述人体感应器为红外感应器。

根据上述的一种基于鱼眼摄像头的人脸识别方法,包括以下步骤:

S1:人脸识别锁休眠状态;

S2:人体感应器运作,判断是否有人靠近,如果有人靠近,转S3,如果无人,转S1;

S3:主控制器发指令控制鱼眼摄像头采集图像;

S4:图像进入图像预处理模块进行初步处理;

S5:处理后的图像进入畸变校正处理模块进行畸变矫正处理;

S6:处理后的图像进行人脸检测和识别;

S7:判断是否识别成功,如果成功,转S8,如果不成功,不动作;

S8:主控制器发指令给电机,打开门锁。

上述方案中,所述S4中采用直方图均衡化方法进行预处理。

上述方案中,所述S5中采用球面模型等距投影算法进行畸变校正处理。

上述方案中,所述S6中检测为在背景图像中找到并标识人脸的位置和大小,识别为提取特征点并与数据库中存储的特征模板进行匹配,以判断是否具有开门权限。

上述方案中,所述S7中识别不成功,发出警报。

本发明的优点和有益效果在于:本发明提供一种方便灵活的基于鱼眼摄像头的人脸识别锁。将鱼眼摄像头应用于门锁,可以大范围拍摄到人脸图像,解决了用户身高受限的问题,用户不需要任何额外操作,因此用户体验更好,从而有效解决了用户过高或者过矮拍不到人脸图像从而使得人脸识别受限的问题。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的系统框图;

图2为本发明的结构示意图;

图3为本发明鱼眼摄像头的角度示意图;

图4为本发明的流程图。

图中:1、人体感应器 2、人脸控制系统 3、鱼眼摄像头 4、电机 5、门锁 21、主控制器 22、图像预处理模块 23、畸变校正处理模块 24、人脸检测识别模块

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

如图1、图2、图3所示,本发明是一种基于鱼眼摄像头的人脸识别锁,包括人体感应器1、人脸控制系统2、鱼眼摄像头3、电机4和门锁5,人体感应器1连接人脸控制系统2,人脸控制系统2连接鱼眼摄像头3,人脸控制系统2 连接电机4,电机4连接门锁5;

人脸控制系统2包括主控制器21、图像预处理模块22、畸变校正处理模块 23和人脸检测识别模块24,主控制器21连接图像预处理模块22,图像预处理模块22连接畸变校正处理模块23,畸变校正处理模块23连接人脸检测识别模块24,人脸检测识别模块24连接主控制器21。其中,人体感应器1为红外感应器。

如图4所示,一种基于鱼眼摄像头的人脸识别方法,包括以下步骤:

S1:人脸识别锁休眠状态;

S2:人体感应器运作,判断是否有人靠近,如果有人靠近,转S3,如果无人,转S1;

S3:主控制器发指令控制鱼眼摄像头采集图像;

S4:图像进入图像预处理模块进行初步处理;

S5:处理后的图像进入畸变校正处理模块进行畸变矫正处理;

S6:处理后的图像进行人脸检测和识别;

S7:判断是否识别成功,如果成功,转S8,如果不成功,不动作;

S8:主控制器发指令给电机,打开门锁。

针对常规人脸识别锁针对不同身高用户识别的局限性,提出一种人脸识别门锁,在门锁中采用短焦距鱼眼摄像头,鱼眼摄像头可以实现接近180度视角的拍摄,采用鱼眼图像畸变校正算法,将鱼眼镜头提供的变形图像,校正为符合人们视觉习惯的高清无失真的图像,并进行下一步的人脸检测和识别,从而有效解决了用户过高或者过矮拍不到人脸图像从而使得人脸识别受限的问题。

该人脸识别锁工作原理如下:正常情况下,人脸识别锁处于休眠状态。当人体感应器检测到有人靠近时,启动人脸控制系统工作,鱼眼摄像头开始采集图像,并将拍摄的图像传送到主控制器进行以下处理。

首先S4中进行采集图像的预处理,采用直方图均衡噪声去除、平滑和锐化等处理,消除光照等外部环境造成的干扰、噪声等,提高采集图像的质量。

鱼眼摄像头焦距短,监控范围大,但是拍摄的图像畸变严重。因此需要经过畸变校正处理,S5中可采用球面模型等距投影算法进行畸变校正,通过建立几何模型,对鱼眼图像上的像素点进行坐标变换,并通过图像插值技术转换成校正图像上像素点的坐标,还原得到精度高的正常图像。

S6中针对校正后的图像进行人脸检测和识别,并根据识别结果进行后续处理。人脸检测的目的是在背景图像中找到并标识出人脸的位置和大小。检测到人脸区域后,提取特征点并于数据库中存储的特征模板进行匹配,以判断是否具有开门权限。

上述S7中当识别不成功的时候,发出警报,通知家人。

将鱼眼摄像头应用于门锁,可以大范围拍摄到人脸图像,解决了用户身高受限的问题,用户不需要任何额外操作,因此用户体验更好。当门锁安装高度为1.1米时,距离门锁55cm时,理论上可以完整拍摄到身高从50cm到220cm 的用户人脸。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值