点乘 线性代数_线性代数 1.3C 矩阵

我们在前面费了好大得劲,从线性组合和空间两个角度,描述了线性变换。你可能要问,为什么向量在原来的空间,用i^和j^活的挺好,为什么要费这么大的劲换一个基向量组,把整个空间全都换一遍呢?

这全部的一切,都是为了引出整个线性代数学科中概念的核心——矩阵。

我们前面讲过线性变换,像一个黑盒子,或者一个函数:

3d59f01cb4559c4568488f62bc82c5ad.png

如果我们把新的基向量排成一个阵列:

d0b85e9d970a74d7677e30711048b1ed.png

在这个新的阵列中(图好丑),第一列和第二列是新的两个基向量,也就是原来的i^和j^被换成的新的向量,如果是上图中的例子,两个向量就是(1,2)T和(3,-1)T:

515298c088b116ec0dc47f1ed8881675.png

就形成了一个矩阵(Matrix),整个线性代数的核心概念。这个矩阵就可以代表线性变换,因为线性变换无非就是要规定新的基向量是什么,现在全部的基向量的信息都已经在里面了。

一不做二不休,既然矩阵已经以线性变换的身份登场,那么我们就顺便把它线性变换的一面——也就是矩阵的乘法一起也叫上来。我们把这种变换定义为:拿这个矩阵乘以原向量,输出新的向量。也就是说:上面的框图写成矩阵的形式,就是:

063e5b9bc120c8d5e795a1500c18d348.png

如果我们把中间的细节也展现出来,就是还原他其中的线性组合的细节:

0c479332e83c9505475e449a26feed56.png

这就是矩阵的乘法。和我们之前死记硬背的行列点乘是有本质区别的。

这就是矩阵这个核心概念的第一次亮相,显得有点波澜不惊。在国内的教材中,一般是从线性方程组的系数矩阵入手。我觉得是不如这样去理解的,因为它一上来就把矩阵当成了一种操作,它是活的有生命的。这是我读西方教材和我们的教材(我们的很多教材是受战斗民族的影响)的一个很重大的差别,西方的教材和教授着重概念和理解,东方注重计算和技巧。我觉得可能是和战斗民族的顶级人才的智商太高有关系(国际象棋,ACM,黑客的顶尖中很多都是战斗民族的),所以他们才会编出吉米多维奇这种神书来不断的向智力的顶峰冲击,然后落下我等弱鸡白白兴叹。

既然矩阵以这样的身份登场,我们就好好说说它。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值