第21章 随机波动率模型:无相关性时的微笑曲线

文章探讨了在无相关性假设下,随机波动率模型对布莱克-斯科尔斯-默顿公式的影响,揭示了股票价格、行权价和隐含波动率之间的关系。通过数学推导,展示了微笑曲线的形成和对称性,以及波动率的货币性如何决定隐含波动率。特别地,当波动率服从几何布朗运动时,平值期权的隐含波动率随到期日先上升后下降的特性被分析,并提供了近似解析表达式。
摘要由CSDN通过智能技术生成

这学期会时不时更新一下伊曼纽尔·德曼(Emanuel Derman) 教授与迈克尔B.米勒(Michael B. Miller)的《The Volatility Smile》这本书,本意是协助导师课程需要,发在这里有意的朋友们可以学习一下,思路不一定够清晰且由于分工原因我是从书本第13章写起,还请大家见谅。

第21章 随机波动率模型:无相关性时的微笑曲线

无相关性时的微笑曲线由货币性决定

不同的标的资产价格 S S S 或行权价 K K K 对于布莱克-斯科尔斯-默顿(BSM)公式来说是无差别的。如果我们将股票价格和行权价同时乘以任意常数,BSM的期权价格也会增加该常数倍。对于任意常数 α \alpha α,我们可以得到:
C B S M ( α S , α K , σ , τ , r ) = α C B S M ( S , K , σ , τ , r ) C_{BSM}(\alpha S,\alpha K,\sigma,\tau,r)=\alpha C_{BSM}(S,K,\sigma,\tau,r) CBSM(αS,αK,σ,τ,r)=αCBSM(S,K,σ,τ,r)
α = 1 / S \alpha=1/S α=1/S,并且在等式两侧同时乘以 S S S,再移项调整后,就有:
C B S M ( S , K , σ , τ , r ) = S C B S M ( 1 , K S , σ , τ , r ) C_{BSM}(S,K,\sigma,\tau,r)=SC_{BSM}(1,\frac{K}{S},\sigma,\tau,r) CBSM(S,K,σ,τ,r)=SCBSM(1,SK,σ,τ,r)
如果波动率 σ \sigma σ 是一个由股票价格决定的函数,那么该等式就不是一个无差别方程,此前的结论也不成立

上一章中推导了混合定理,该定理提出,对于期权 C S V C_{SV} CSV 而言,如果标的股票价格与其波动率之间的相关系数为0,那么该期权在随机波动率模型中的价格就可以表示为,不同波动率变动路径分布下BSM模型期权价格的加权平均值。现在来看一个简单的案例,假设波动率路径只有两种情况,要么高波动率( σ ˉ H \bar\sigma_H σˉH),要么低波动率( σ ˉ L \bar\sigma_L σˉL),两种波动率出现的概率相等,于是根据混合定理:
C S V = 1 2 [ C B S M ( S , K , σ ˉ H ) + C B S M ( S , K , σ ˉ L ) ] C_{SV}=\frac{1}{2}[C_{BSM}(S,K,\bar\sigma_H)+C_{BSM}(S,K,\bar\sigma_L)] CSV=21[CBSM(S,K,σˉH)+CBSM(S,K,σˉL)]
此处为了简便隐去了 τ , r \tau,r τ,r,引入货币性可得:
C S V = S 2 [ C B S M ( 1 , K S , σ ˉ H ) + C B S M ( 1 , K S , σ ˉ L ) ] ≡ S f ( K S ) C_{SV}=\frac{S}{2}[C_{BSM}(1,\frac{K}{S},\bar\sigma_H)+C_{BSM}(1,\frac{K}{S},\bar\sigma_L)]\equiv Sf(\frac{K}{S}) CSV=2S[CBSM(1,SK,σˉH)+CBSM(1,SK,σˉL)]Sf(SK)
上式中 f ( K S ) f(\dfrac{K}{S}) f(SK) 是由比率 K / S K/S K/S 决定的函数

看涨期权的 BSM 隐含波动率的定义是,将其代回到BSM公式中,得到的期权价格等于随机波动率模型得到的期权价格 C S V C_{SV} CSV,于是:
C S V ≡ C B S M ( S , K , Σ ) = S C B S M ( 1 , K S , Σ ) C_{SV}\equiv C_{BSM}(S,K,\Sigma)=SC_{BSM}(1,\frac{K}{S},\Sigma) CSVCBSM(S,K,Σ)=SCBSM(1,SK,Σ)
结合上述两式可得:
C S V = S f ( K S ) = S C B S M ( 1 , K S , Σ ) C B S M ( 1 , K S , Σ ) = f ( K S ) C_{SV}=Sf(\frac{K}{S})=SC_{BSM}(1,\frac{K}{S},\Sigma)\\ C_{BSM}(1,\frac{K}{S},\Sigma)=f(\frac{K}{S}) CSV=Sf(SK)=SCBSM(1,SK,Σ)CBSM(1,SK,Σ)=f(SK)
在随机波动率模型中,当相关系数等于0的时候,BSM隐含波动率确实是一个由货币性决定的函数,也就是说:
Σ = g ( K S ) \Sigma=g(\frac{K}{S}) Σ=g(SK)
尽管在我们的案例中只有两种波动率变动路径,该结论也具有更普遍的适用性。在随机波动率模型中,当相关系数等于0时,如果未来波动率变动的分布情况保持不变,那么隐含波动率就是一个由货币性决定的函数。当然了,有可能在我们的随机波动率模型中,波动率的分布会变化,而且是该变化是独立的,但是在这里我们先假设不会出现这种情况

当股价发生变动时,斜度和隐含波动率的变动之间存在着某种关系,为了明确这种关系,我们首先推导上式分别对 K 和 S 的偏微分表达式:
∂ Σ ∂ S = − K S 2 g ′ ∂ Σ ∂ K = 1 S g ′ \frac{\partial\Sigma}{\partial S}=-\frac{K}{S^2}g'\\ \frac{\partial\Sigma}{\partial K}=\frac{1}{S}g' SΣ=S2KgKΣ=S1g
因此有:
S ∂ Σ ∂ S + K ∂ Σ ∂ K = 0 S\frac{\partial\Sigma}{\partial S}+K\frac{\partial\Sigma}{\partial K}=0 SSΣ+KKΣ=0
这就是一阶齐次函数的欧拉方程 (Euler’s equation) 表达式。只要未来波动率变动的分布保持不变,当前的斜度就可以决定未来隐含波动率与股票价格之间的变动关系

平值期权,或者接近于平值期权时,有 S ≈ K S\approx K SK
∂ Σ ∂ S ≈ − ∂ Σ ∂ K \frac{\partial\Sigma}{\partial S}\approx-\frac{\partial\Sigma}{\partial K} SΣKΣ
这恰恰与我们从局部波动率模型中得到的结论相反。当相关系数等于0的时候,对于平值期权来说, S S S 发生微小变动对隐含波动率的影响,约等于 K K K 发生反方向同等幅度变动对于隐含波动率的影响,二者的作用效果相互抵消。换句话说,股价位于平值期权行权价附近时,BSM隐含波动率可以用一个 ( S − K ) (S-K) (SK) 的函数来近似表达:
Σ ≈ Σ ( S − K ) \Sigma\approx\Sigma(S-K) ΣΣ(SK)
假设未来波动率变动的分布保持不变,下图展示了在随机波动率框架下,当相关系数等于0的时候,股票价格下降对于微笑曲线的作用效果。当股票价格下降时,整条微笑曲线都向下移动了,尽管如此,微笑曲线的下降所带来的影响下移恰好被(股票价格)沿微笑曲线的移动所抵消,于是平值期权行权价对应的隐含波动率仍然保持不变

无相关性下的微笑曲线呈现对称性

上一章中用 σ ˉ T \bar\sigma_T σˉT 表示在当前与到期日之间,沿某路径变动的波动率的时间平均值。这也就是路径波动率(实际上就是路径方差的开方值)。在本节中,为了简便,我们去掉下角标 T T T,用 σ ˉ \bar\sigma σˉ 来表示路径波动率。在连续极限条件下,随着可能的波动率路径数量的增加,不同路径下(波动率)的合计数就变成了一个积分函数。用 ϕ ( σ ˉ ) \phi(\bar\sigma) ϕ(σˉ) 表示路径波动率的概率密度函数,于是就有:
C S V = ∫ 0 ∞ C B S M ( σ ˉ ) ϕ ( σ ˉ ) d σ ˉ C_{SV}=\int_0^{\infty}C_{BSM}(\bar\sigma)\phi(\bar\sigma)d\bar\sigma CSV=0CBSM(σˉ)ϕ(σˉ)dσˉ
假设波动率的波动率很小,然后对平均路径波动率 σ ˉ ˉ \bar{\bar\sigma} σˉˉ 进行二阶泰勒展开:
C S V = ∫ 0 ∞ C B S M ( σ ˉ ˉ + σ ˉ − σ ˉ ˉ ) ϕ ( σ ˉ ) d σ ˉ ≈ ∫ 0 ∞ [ C B S M ( σ ˉ ˉ ) + ∂ C B S M ∂ σ ˉ ∣ σ ˉ ˉ ( σ ˉ − σ ˉ ˉ ) + 1 2 ∂ 2 C B S M ∂ σ ˉ 2 ∣ σ ˉ ˉ ( σ ˉ − σ ˉ ˉ ) 2 ] ϕ ( σ ˉ ) d σ ˉ ≈ C B S M ( σ ˉ ˉ ) + 0 + 1 2 ∂ 2 C B S M ∂ σ ˉ 2 ∣ σ ˉ ˉ v a r [ σ ˉ ] ≈ C B S M ( σ ˉ ˉ ) + 1 2 ∂ 2 C B S M ∂ σ ˉ 2 ∣ σ ˉ ˉ v a r [ σ ˉ ] C_{SV}=\int_0^{\infty}C_{BSM}(\bar{\bar\sigma}+\bar\sigma-\bar{\bar\sigma})\phi(\bar\sigma)d\bar\sigma\\\approx\int_0^{\infty}[C_{BSM}(\bar{\bar\sigma})+\frac{\partial C_{BSM}}{\partial\bar\sigma}|_{\bar{\bar\sigma}}(\bar\sigma-\bar{\bar\sigma})+\frac{1}{2}\frac{\partial^2C_{BSM}}{\partial\bar\sigma^2}|_{\bar{\bar\sigma}}(\bar\sigma-\bar{\bar\sigma})^2]\phi(\bar\sigma)d\bar\sigma\\\approx C_{BSM}(\bar{\bar\sigma})+0+\frac{1}{2}\frac{\partial^2C_{BSM}}{\partial\bar\sigma^2}|_{\bar{\bar\sigma}}var[\bar\sigma]\\\approx C_{BSM}(\bar{\bar\sigma})+\frac{1}{2}\frac{\partial^2C_{BSM}}{\partial\bar\sigma^2}|_{\bar{\bar\sigma}}var[\bar\sigma] CSV=0CBSM(σˉˉ+σˉσˉˉ)ϕ(σˉ)dσˉ0[CBSM(σˉˉ)+σˉCBSMσˉˉ(σˉσˉˉ)+21σˉ22CBSMσˉˉ(σˉσˉˉ)2]ϕ(σˉ)dσˉCBSM(σˉˉ)+0+21σˉ22CBSMσˉˉvar[σˉ]CBSM(σˉˉ)+21σˉ22CBSMσˉˉvar[σˉ]
其中 v a r [ σ ˉ ] var[\bar\sigma] var[σˉ] 表示在期权有效期内股票路径波动率 σ ˉ \bar\sigma σˉ 的方差

我们用BSM结果作为我们对期权的报价依据,因此,跟此前一样,我们可以用BSM隐含波动率 Σ \Sigma Σ 来表示这个随机波动率的解,此外,由于波动率的波动率很小,我们可以认为 Σ \Sigma Σ σ ˉ ˉ \bar{\bar\sigma} σˉˉ 之间的差异也很小。于是:
C S V = C B S M ( Σ ) = C B S M ( σ ˉ ˉ + Σ − σ ˉ ˉ ) = C B S M ( σ ˉ ˉ ) + ∂ C B S M ∂ σ ˉ ∣ σ ˉ ˉ ( Σ − σ ˉ ˉ ) + . . . ≈ C B S M ( σ ˉ ˉ ) + ∂ C B S M ∂ σ ˉ ∣ σ ˉ ˉ ( Σ − σ ˉ ˉ ) C_{SV}=C_{BSM}(\Sigma)=C_{BSM}(\bar{\bar\sigma}+\Sigma-\bar{\bar\sigma})=C_{BSM}(\bar{\bar\sigma})+\frac{\partial C_{BSM}}{\partial\bar\sigma}|_{\bar{\bar\sigma}}(\Sigma-\bar{\bar\sigma})+...\\\approx C_{BSM}(\bar{\bar\sigma})+\frac{\partial C_{BSM}}{\partial\bar\sigma}|_{\bar{\bar\sigma}}(\Sigma-\bar{\bar\sigma}) CSV=CBSM(Σ)=CBSM(σˉˉ+Σσˉˉ)=CBSM(σˉˉ)+σˉCBSMσˉˉ(Σσˉˉ)+...CBSM(σˉˉ)+σˉCBSMσˉˉ(Σσˉˉ)
联系上述两个式子可以得到:
∂ C B S M ∂ σ ˉ ∣ σ ˉ ˉ ( Σ − σ ˉ ˉ ) ≈ 1 2 ∂ 2 C B S M ∂ σ ˉ 2 ∣ σ ˉ ˉ v a r [ σ ˉ ] Σ ≈ σ ˉ ˉ + 1 2 ∂ 2 C B S M ∂ σ ˉ 2 ∣ σ ˉ ˉ v a r [ σ ˉ ] ∂ C B S M ∂ σ ˉ ∣ σ ˉ ˉ \frac{\partial C_{BSM}}{\partial\bar\sigma}|_{\bar{\bar\sigma}}(\Sigma-\bar{\bar\sigma})\approx\frac{1}{2}\frac{\partial^2C_{BSM}}{\partial\bar\sigma^2}|_{\bar{\bar\sigma}}var[\bar\sigma]\\ \Sigma\approx\bar{\bar\sigma}+\dfrac{\frac{1}{2}\frac{\partial^2C_{BSM}}{\partial\bar\sigma^2}|_{\bar{\bar\sigma}}var[\bar\sigma]}{\frac{\partial C_{BSM}}{\partial\bar\sigma}|_{\bar{\bar\sigma}}} σˉCBSMσˉˉ(Σσˉˉ)21σˉ22CBSMσˉˉvar[σˉ]Σσˉˉ+σˉCBSMσˉˉ21σˉ22CBSMσˉˉvar[σˉ]
在第 19 章中,当股息率和无风险利率都等于0的时候,我们曾经计算过下列BSM导数式:
V = ∂ C B S M ∂ σ = S τ 2 π e − 1 2 d 1 2 ∂ 2 C B S M ∂ σ 2 = V d 1 d 2 σ = V σ [ ( 1 v ln ⁡ ( S K ) ) 2 − v 2 4 ] V=\frac{\partial C_{BSM}}{\partial\sigma}=\frac{S\sqrt\tau}{\sqrt{2\pi}}e^{-\frac{1}{2}d_1^2}\\ \frac{\partial^2C_{BSM}}{\partial\sigma^2}=V\frac{d_1d_2}{\sigma}=\frac{V}{\sigma}[(\frac{1}{v}\ln(\frac{S}{K}))^2-\frac{v^2}{4}] V=σCBSM=2π Sτ e21d12σ22CBSM=Vσd1d2=σV[(v1ln(KS))24v2]
这里 v = σ τ v=\sigma\sqrt{\tau} v=στ 表示在期权剩余有效期 τ \tau τ 内总的波动率。在上式中,当 S = K S=K S=K 的时候,vega 值呈现轻微的负凸性。将上式代入可得:
Σ ≈ σ ˉ ˉ + 1 2 ∂ 2 C B S M ∂ σ ˉ 2 ∣ σ ˉ ˉ v a r [ σ ˉ ] ∂ C B S M ∂ σ ˉ ∣ σ ˉ ˉ = σ ˉ ˉ + 1 2 V ′ σ ˉ ˉ [ ( 1 v ˉ ˉ ln ⁡ ( S K ) ) 2 − v ˉ ˉ 2 4 ] v a r [ σ ˉ ] V ′ = σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 v ˉ ˉ ln ⁡ ( S K ) ) 2 − v ˉ ˉ 2 4 ] \Sigma\approx\bar{\bar\sigma}+\dfrac{\frac{1}{2}\frac{\partial^2C_{BSM}}{\partial\bar\sigma^2}|_{\bar{\bar\sigma}}var[\bar\sigma]}{\frac{\partial C_{BSM}}{\partial\bar\sigma}|_{\bar{\bar\sigma}}}=\bar{\bar\sigma}+\frac{1}{2}\frac{\frac{V'}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar v}}\ln(\frac{S}{K}))^2-\frac{\bar{\bar v}^2}{4}]var[\bar\sigma]}{V'}=\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar v}}\ln(\frac{S}{K}))^2-\frac{\bar{\bar v}^2}{4}] Σσˉˉ+σˉCBSMσˉˉ21σˉ22CBSMσˉˉvar[σˉ]=σˉˉ+21VσˉˉV[(vˉˉ1ln(KS))24vˉˉ2]var[σˉ]=σˉˉ+21var[σˉ]σˉˉ1[(vˉˉ1ln(KS))24vˉˉ2]
其中 v ˉ = σ ˉ τ \bar v=\bar\sigma\sqrt\tau vˉ=σˉτ 。上式右侧部分是一个与 ln ⁡ ( S / K ) \ln(S/K) ln(S/K) 有关的二项式,因此对应的是一条类似抛物线的微笑曲线,该抛物线随着 ( ln ⁡ ( S / K ) ) 2 (\ln(S/K))^2 (ln(S/K))2 的变动而变动,这是一个货币性黏性微笑曲线,只与 K / S K/S K/S 的值有关。如果用线性式来近似表达货币性,也就是 ( K − S ) (K-S) (KS),这条微笑曲线随 ( K − S ) 2 (K-S)^2 (KS)2 的变动而变动,也就是行权价与当前股价的差

上式中用 σ ˉ ˉ τ \bar{\bar\sigma}\sqrt\tau σˉˉτ 代替 v ˉ ˉ \bar{\bar v} vˉˉ,我们可以得到无相关性下的随机波动率模型,其隐含波动率表达式如下:
Σ ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 σ ˉ ˉ 2 τ ( ln ⁡ ( S K ) ) 2 − σ ˉ ˉ 2 τ 4 ] \Sigma\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar\sigma}^2\tau}(\ln(\frac{S}{K}))^2-\frac{\bar{\bar\sigma}^2\tau}{4}] Σσˉˉ+21var[σˉ]σˉˉ1[(σˉˉ2τ1(ln(KS))24σˉˉ2τ]

案例:两状态随机路径波动率

回到两状态随机波动率模型,如下:
C S V = 1 2 [ C B S M ( S , K , σ ˉ H ) + C B S M ( S , K , σ ˉ L ) ] C_{SV}=\frac{1}{2}[C_{BSM}(S,K,\bar\sigma_H)+C_{BSM}(S,K,\bar\sigma_L)] CSV=21[CBSM(S,K,σˉH)+CBSM(S,K,σˉL)]
σ ˉ L = 20 % , σ ˉ H = 80 % \bar\sigma_L=20\%,\bar\sigma_H=80\% σˉL=20%,σˉH=80%,在期权有效期内,波动率平均值和方差分别是:
m e a n [ σ ˉ ] = 1 2 × ( 0.2 + 0.8 ) = 0.5 v a r [ σ ˉ ] = 1 2 × [ ( 0.2 − 0.5 ) 2 + ( 0.8 − 0.5 ) 2 ] = 0.09 mean[\bar\sigma]=\frac{1}{2}\times(0.2+0.8)=0.5\\ var[\bar\sigma]=\frac{1}{2}\times[(0.2-0.5)^2+(0.8-0.5)^2]=0.09 mean[σˉ]=21×(0.2+0.8)=0.5var[σˉ]=21×[(0.20.5)2+(0.80.5)2]=0.09

上图展示的是,根据两状态随机波动率模型中混合等式的精确值以及:
Σ ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 σ ˉ ˉ 2 τ ( ln ⁡ ( S K ) ) 2 − σ ˉ ˉ 2 τ 4 ] \Sigma\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar\sigma}^2\tau}(\ln(\frac{S}{K}))^2-\frac{\bar{\bar\sigma}^2\tau}{4}] Σσˉˉ+21var[σˉ]σˉˉ1[(σˉˉ2τ1(ln(KS))24σˉˉ2τ]
中的近似解,得到的 3 个到期日下的隐含波动率微笑曲线。可以发现,上式在这3种情况下得到的近似解和精确解之间很接近,这3种情况下的微笑曲线都是对称的

注意图中期权有效期对于微笑曲线形状的影响。期限越长,微笑曲线越平坦,期限越短,微笑曲线就越陡峭。为了更好地理解微笑曲线的曲率递减特征,我们可以重新改写上式,重点关注货币性的二次项:
Σ ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 σ ˉ ˉ 2 τ ( ln ⁡ ( S K ) ) 2 − σ ˉ ˉ 2 τ 4 ] ≡ f ( σ ˉ ˉ , v a r [ σ ˉ ] , τ ) + c ( σ ˉ ˉ ) v a r [ σ ˉ ] τ ( ln ⁡ ( S K ) ) 2 \Sigma\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar\sigma}^2\tau}(\ln(\frac{S}{K}))^2-\frac{\bar{\bar\sigma}^2\tau}{4}]\\\equiv f(\bar{\bar\sigma},var[\bar\sigma],\tau)+c(\bar{\bar\sigma})\frac{var[\bar\sigma]}{\tau}(\ln(\frac{S}{K}))^2 Σσˉˉ+21var[σˉ]σˉˉ1[(σˉˉ2τ1(ln(KS))24σˉˉ2τ]f(σˉˉ,var[σˉ],τ)+c(σˉˉ)τvar[σˉ](ln(KS))2
其中 c ( σ ˉ ˉ ) c(\bar{\bar\sigma}) c(σˉˉ) 是一个与平均路径波动率 σ ˉ ˉ \bar{\bar\sigma} σˉˉ 相关的函数。在这个路径波动率只有两种状态的案例中, σ ˉ , v a r [ σ ˉ ] \bar\sigma,var[\bar\sigma] σˉ,var[σˉ] 都与 τ \tau τ 无关。因此在上式中, ( ln ⁡ ( S K ) ) 2 (\ln(\frac{S}{K}))^2 (ln(KS))2 的系数 τ − 1 \tau^{-1} τ1 就意味着微笑曲线的曲率会随着到期日的临近而降低。在实际情况中,随着到期日的临近,波动率微笑曲线的凸性通常会下降

最后再来看一看距到期日时间长短对于平值期权隐含波动率的影响。平值期权的隐含波动率总是低于平均波动率,即50%,并且会随着到期日的临近而降低。如何得到这一结论并不难,在下式中:
Σ ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 σ ˉ ˉ 2 τ ( ln ⁡ ( S K ) ) 2 − σ ˉ ˉ 2 τ 4 ] \Sigma\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar\sigma}^2\tau}(\ln(\frac{S}{K}))^2-\frac{\bar{\bar\sigma}^2\tau}{4}] Σσˉˉ+21var[σˉ]σˉˉ1[(σˉˉ2τ1(ln(KS))24σˉˉ2τ]
S = K S=K S=K,于是平值期权的波动率可以表示为:
Σ a t m ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ ( σ ˉ ˉ 2 τ 4 ) = σ ˉ ˉ − 1 8 v a r [ σ ˉ ] σ ˉ ˉ τ \Sigma_{atm}\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}(\frac{\bar{\bar\sigma}^2\tau}{4})=\bar{\bar\sigma}-\frac{1}{8}var[\bar\sigma]\bar{\bar\sigma}\tau Σatmσˉˉ+21var[σˉ]σˉˉ1(4σˉˉ2τ)=σˉˉ81var[σˉ]σˉˉτ
平值期权的隐含波动率低于平均波动率,这是因为(当股票价格) 在平值期权行权价附近时,BSM 下期权价格的凸性为负

无相关性下,几何布朗运动随机波动率的微笑曲线

假设路径波动率不再只有两种状态,股票价格的波动率是连续的,且服从连续分布,这在现实中更为常见。现在假设波动率本身服从几何布朗运动(GBM),如下:
d σ = a σ d t + b σ d Z d\sigma=a\sigma dt+b\sigma dZ dσ=dt+dZ
a , b a,b a,b 都是常数,分别代表波动率的游走变量以及波动率的波动率。现在继续假设股票价格和波动率之间不存在相关性。上式跟Hull和White(1987)推出的随机波动率模型很相似

上图是在上式的基础上得到的1年期微笑曲线,初始波动率等于20%, a = 0 , b = 0.1 a=0,b=0.1 a=0,b=0.1,计算方法是直接根据上式进行了蒙特卡洛模拟,然后再用混合公式确定期权的价格以及其BSM隐含波动率。以 ln ⁡ ( S / K ) \ln(S/K) ln(S/K) 来衡量,这个微笑曲线也是对称的。此时,平值期权的波动率到期期限 τ \tau τ 的关系就不是单调的了,而是先上升后下降

无相关性下,GBM随机波动率微笑曲线的近似解析

首先只看平值期权的波动率,可以将:
Σ a t m ≈ σ ˉ ˉ − 1 8 v a r [ σ ˉ ] σ ˉ ˉ τ \Sigma_{atm}\approx\bar{\bar\sigma}-\frac{1}{8}var[\bar\sigma]\bar{\bar\sigma}\tau Σatmσˉˉ81var[σˉ]σˉˉτ
改写成如下表达式:
Σ a t m ≈ σ ˉ ˉ ( 1 − 1 8 v a r [ σ ˉ ] τ ) \Sigma_{atm}\approx\bar{\bar\sigma}(1-\frac{1}{8}var[\bar\sigma]\tau) Σatmσˉˉ(181var[σˉ]τ)
假设瞬时波动率 σ \sigma σ 的变动服从:
d σ = a σ d t + b σ d Z d\sigma=a\sigma dt+b\sigma dZ dσ=dt+dZ
我们来估算一下距离到期日期限与这些路径波动率值之间的关系。根据伊藤引理,瞬时方差 σ 2 \sigma^2 σ2 近似满足于如下的随机微分表达式:
d r i f t [ σ 2 ] = 2 a + b 2 v o l [ σ 2 ] = 2 b drift[\sigma^2]=2a+b^2\\ vol[\sigma^2]=2b drift[σ2]=2a+b2vol[σ2]=2b
因此 σ 2 \sigma^2 σ2 的游走变量约等于波动率游走变量的两倍, σ 2 \sigma^2 σ2 的波动率等于波动率的波动率的两倍。游走变量中的 b 2 b^2 b2 是来自于伊藤引理中的维纳过程的平方值

路径方差是在到期日 T T T 前的瞬时方差的算术平均数,但是瞬时方差 σ 2 \sigma^2 σ2 本身服从几何布朗运动。因此,路径方差没有闭式表达式。但是可以证明,这个算术平均数的游走变量和波动率大概是非平均变量的 1 / 2 1/2 1/2 1 / 3 1/\sqrt{3} 1/3 。因此, σ ˉ 2 \bar\sigma^2 σˉ2 的游走变量和波动率分别约为:
d r i f t [ σ ˉ 2 ] ≈ a + 1 2 b 2 v o l [ σ ˉ 2 ] ≈ 2 b 3 drift[\bar\sigma^2]\approx a+\frac{1}{2}b^2\\ vol[\bar\sigma^2]\approx\frac{2b}{\sqrt3} drift[σˉ2]a+21b2vol[σˉ2]3 2b
简单来说,路径波动率 σ ˉ \bar\sigma σˉ 的波动率就是路径方差的一半。根据伊藤引理, σ ˉ \bar\sigma σˉ 的游走变量大约等于 σ ˉ 2 \bar\sigma^2 σˉ2 的游走变量的一半。精确来说:
d r i f t [ σ ˉ ] ≈ 1 2 ( a + 1 2 b 2 ) − 1 8 ( 2 b 3 ) 2 ≈ a 2 + 1 12 b 2 v o l [ σ ˉ ] ≈ ( b 3 ) drift[\bar\sigma]\approx\frac{1}{2}(a+\frac{1}{2}b^2)-\frac{1}{8}(\frac{2b}{\sqrt3})^2\approx\frac{a}{2}+\frac{1}{12}b^2\\ vol[\bar\sigma]\approx(\frac{b}{\sqrt3}) drift[σˉ]21(a+21b2)81(3 2b)22a+121b2vol[σˉ](3 b)
因此对下式:
Σ a t m ≈ σ ˉ ˉ ( 1 − 1 8 v a r [ σ ˉ ] τ ) \Sigma_{atm}\approx\bar{\bar\sigma}(1-\frac{1}{8}var[\bar\sigma]\tau) Σatmσˉˉ(181var[σˉ]τ)
τ \tau τ 运用泰勒展开,其中的领头阶,也就是平均路径波动率随时间 τ \tau τ 变动的近似表达式为:
σ ˉ ˉ ( τ ) ≈ σ e ( a 2 + 1 12 b 2 ) τ ≈ σ [ 1 + ( a 2 + 1 12 b 2 ) τ + 1 2 ( a 2 + 1 12 b 2 ) 2 τ 2 ] \bar{\bar\sigma}(\tau)\approx\sigma e^{(\frac{a}{2}+\frac{1}{12}b^2)\tau}\approx\sigma[1+(\frac{a}{2}+\frac{1}{12}b^2)\tau+\frac{1}{2}(\frac{a}{2}+\frac{1}{12}b^2)^2\tau^2] σˉˉ(τ)σe(2a+121b2)τσ[1+(2a+121b2)τ+21(2a+121b2)2τ2]
路径波动率的总方差随时间 τ \tau τ 的关系式如下:
v a r [ σ ˉ ] ≈ b 2 3 σ 2 τ var[\bar\sigma]\approx\frac{b^2}{3}\sigma^2\tau var[σˉ]3b2σ2τ
总方差随到期日的临近而线性递增,这是布朗运动的标准特征。将这些结果代入,保留 τ \tau τ 展开式中的前两项,可以得到:
Σ a t m ≈ σ ˉ ˉ ( 1 − 1 8 v a r [ σ ˉ ] τ ) ≈ σ [ 1 + ( a 2 + 1 12 b 2 ) τ + 1 2 ( a 2 + 1 12 b 2 ) 2 τ 2 ] ( 1 − 1 8 b 2 3 σ 2 τ 2 ) ≈ σ [ 1 + ( a 2 + 1 12 b 2 ) τ + ( 1 2 ( a 2 + 1 12 b 2 ) 2 − b 2 24 σ 2 ) τ 2 ] \Sigma_{atm}\approx\bar{\bar\sigma}(1-\frac{1}{8}var[\bar\sigma]\tau)\\\approx\sigma[1+(\frac{a}{2}+\frac{1}{12}b^2)\tau+\frac{1}{2}(\frac{a}{2}+\frac{1}{12}b^2)^2\tau^2](1-\frac{1}{8}\frac{b^2}{3}\sigma^2\tau^2)\\\approx\sigma[1+(\frac{a}{2}+\frac{1}{12}b^2)\tau+(\frac{1}{2}(\frac{a}{2}+\frac{1}{12}b^2)^2-\frac{b^2}{24}\sigma^2)\tau^2] Σatmσˉˉ(181var[σˉ]τ)σ[1+(2a+121b2)τ+21(2a+121b2)2τ2](1813b2σ2τ2)σ[1+(2a+121b2)τ+(21(2a+121b2)224b2σ2)τ2]
现在将这个公式代入之前图中的模拟结果中,令 a = 0 a=0 a=0,并且假设波动率 σ \sigma σ 和波动率的波动率 b b b 都很小,可以得到:
Σ a t m ≈ σ [ 1 + b 2 12 τ + b 2 24 ( b 2 12 − σ 2 ) τ 2 ] \Sigma_{atm}\approx\sigma[1+\frac{b^2}{12}\tau+\frac{b^2}{24}(\frac{b^2}{12}-\sigma^2)\tau^2] Σatmσ[1+12b2τ+24b2(12b2σ2)τ2]
这是一个很有意思的公式,其中包含一个 的线性项,还有一个 τ \tau τ 的二次项。当波动率的波动率 b b b 小于 12 \sqrt{12} 12 乘以波动率时,这个二次项的系数就为负数。因此随着 τ \tau τ 从0逐步增大,这个一次线性项会导致平值期权的波动率逐步提高,而当 τ \tau τ 足够大的时候,二次项的系数变成负数,二次项的绝对值会大于一次项,因此会导致平值期权的波动率再次下降。这就解释了之前图中呈现出来的微笑曲线形状

有了这些近似结论之后,当 τ \tau τ 满足下列等式时,平值期权的波动率达到最大值(二次函数极大值点):
τ = − b 2 12 2 × b 2 24 ( b 2 12 − σ 2 ) = 1 σ 2 − b 2 12 \tau=-\frac{\frac{b^2}{12}}{2\times\frac{b^2}{24}(\frac{b^2}{12}-\sigma^2)}=\frac{1}{\sigma^2-\frac{b^2}{12}} τ=2×24b2(12b2σ2)12b2=σ212b21
利用这个近似表达式,我们不仅可以检查平值期权的隐含波动率水平,也可以检查微笑曲线的曲率情况。我们已经提到过, v a r [ σ ˉ ] var[\bar\sigma] var[σˉ] τ \tau τ 之间应该成比例关系。现在,我们重新调整:
Σ ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 σ ˉ ˉ 2 τ ( ln ⁡ ( S K ) ) 2 − σ ˉ ˉ 2 τ 4 ] \Sigma\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar\sigma}^2\tau}(\ln(\frac{S}{K}))^2-\frac{\bar{\bar\sigma}^2\tau}{4}] Σσˉˉ+21var[σˉ]σˉˉ1[(σˉˉ2τ1(ln(KS))24σˉˉ2τ]
并关注货币性的二次项,我们可以得到:
Σ ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] 1 σ ˉ ˉ [ ( 1 σ ˉ ˉ 2 τ ( ln ⁡ ( S K ) ) 2 − σ ˉ ˉ 2 τ 4 ] ≈ σ ˉ ˉ + 1 2 v a r [ σ ˉ ] σ ˉ ˉ 3 τ ( ln ⁡ ( S K ) ) 2 − v a r [ σ ˉ ] σ ˉ ˉ τ 8 \Sigma\approx\bar{\bar\sigma}+\frac{1}{2}var[\bar\sigma]\frac{1}{\bar{\bar\sigma}}[(\frac{1}{\bar{\bar\sigma}^2\tau}(\ln(\frac{S}{K}))^2-\frac{\bar{\bar\sigma}^2\tau}{4}]\\\approx\bar{\bar\sigma}+\frac{1}{2}\frac{var[\bar\sigma]}{\bar{\bar\sigma}^3\tau}(\ln(\frac{S}{K}))^2-\frac{var[\bar\sigma]\bar{\bar\sigma}\tau}{8} Σσˉˉ+21var[σˉ]σˉˉ1[(σˉˉ2τ1(ln(KS))24σˉˉ2τ]σˉˉ+21σˉˉ3τvar[σˉ](ln(KS))28var[σˉ]σˉˉτ
隐含波动率函数中与 K K K 有关的斜度部分如下:
1 2 v a r [ σ ˉ ] σ ˉ ˉ 3 τ ( ln ⁡ ( S K ) ) 2 ≈ 1 2 b 2 3 σ 2 τ σ ˉ ˉ 3 τ ( ln ⁡ ( S K ) ) 2 ≈ 1 6 b 2 σ ( ln ⁡ ( S K ) ) 2 \frac{1}{2}\frac{var[\bar\sigma]}{\bar{\bar\sigma}^3\tau}(\ln(\frac{S}{K}))^2\approx\frac{1}{2}\frac{\frac{b^2}{3}\sigma^2\tau}{\bar{\bar\sigma}^3\tau}(\ln(\frac{S}{K}))^2\approx\frac{1}{6}\frac{b^2}{\sigma}(\ln(\frac{S}{K}))^2 21σˉˉ3τvar[σˉ](ln(KS))221σˉˉ3τ3b2σ2τ(ln(KS))261σb2(ln(KS))2
可以发现,微笑曲线的曲率跟距到期日时间几乎没有关系

引入了布朗波动率之后,我们的模型就更贴近实际情况,也更为复杂。我们在第 19 章中曾讨论过,如果实际波动率服从均值回归定律,那么在初始阶段,随着距离到期日的临近,实际波动率会增加,但是一段时间之后就会稳定下来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值