形式验证进阶 chipdriver_力学进阶版(一)——复习微分形式(上)

为了进一步讨论曲面、曲线上的(含约束)力学,或者引入更加复杂的力学结构的时候,仅仅只有多变量微积分(

上的微积分)已经不够了。我们还需要引入矢量微积分,矢量微积分的研究给我们提供了一套非常方便和适用的规则,使得物理学家们能够不加证明的推广rot, div, grad等等基于
上的物理直觉。

在这里我们会使用非常物理的语言来避免啰嗦的论证;某些定理我们会基于直觉给出,我们在这个部分选择相信数学家的能力。

我们这一节作为力学进阶版,首先来复习矢量微积分。内容主要来自Frankel, The geometry of Physics: An Introduction,少量来自物理学中的几何方法,冯承天、余扬政。

我们列出一个大纲:1、我们有两种矢量,一个矢量是作为标量函数线性微分算符定义的,另一种是这样定义的矢量空间的对偶空间里的元素,因此是作为矢量的泛函存在的;我们现在有了矢量对标量函数的作用,对偶矢量和矢量的作用。2、我们通过定义张量积构造了张量,并且讨论了两种重要的二阶张量,一个是能将矢量映射为矢量的线性变换,另一个是用来定义矢量对矢量作用的度规张量3、我们讨论一类非常特殊的张量,全反对称协变张量,即p-形式. 我们发现

上的微分形式具有一般讨论的多变量微积分的特征. 4、我们讨论推广的微分,
外微分,是一个将p-形式映射成为p+1-形式的操作. 5、我们讨论 推前和拉回,进而讨论线积分、面积分、和 Stokes定理. 6、我们将推广内积,考虑矢量和一个p-形式的内积,得到一个
形式. 7 简单的介绍欧空间的体积元。8 我们定义了更多的对对偶矢量的操作算符,包括Hodge算符和余微分.

矢量

我们将矢量(逆变矢量,切矢量)定义为标量函数的某种一阶微分算符。简单的来说,我们考虑

上某点和原点构成的射线
,和这个点上的一组坐标,
,那么这一点任何一个矢量
都可以用
展开:
. 这样我们就可以继续定义矢量对一个标量函数的作用
,即,矢量对标量函数的作用就是将标量函数“沿着”矢量微分。

对偶矢量

我们来考虑对偶矢量(协变矢量,1-形式)。线性代数中对偶向量空间

是一类线性泛函
, 函数的微分
那么
对矢量的作用就是:
. 我们接下来想要去寻找对偶矢量的一组基,记作
,那么按照定义,应当满足
那么他作用在矢量
上的结果,经过一番计算,是
,我们又知道,
,所以我们不妨就这样来书写:
,这样写的好处在于:
,因此
.有了基,我们就可以将对偶矢量
按照基展开了:
。对比上一个式子,可能有某些
,但是这并不必要成立。

爱因斯坦求和约定

接下来我们将默认使用爱因斯坦求和约定,i.e,对相同的上指标和下指标自动求和. 按照这个规则,一个逆变矢量作用在矢量上,自动给出

, 不妨也定义矢量对协变矢量的作用
.

请自行验证,在坐标变换下

,逆变矢量按照
而协变矢量按照
,而
是一个
不变量

张量积

我们接下来考虑定义张量积,来诱导出更多的结构。考虑两个协变矢量的张量积定义为矢量的有序数对

的线性函数,
,以此类推,注意
,同样的
,我们可以利用这些性质构造协变、逆变和混变的张量,例如二阶协变张量,
,之后,我们会忽略对偶矢量的直积符号。三阶混变张量:
等等。

请自行验证,在坐标变换下,张量的逆变指标按照逆变规则变化,协变指标按照协变规则变化。

两类特殊的二阶张量:度规、线性变换

我们接下来来讨论两类特殊的二阶张量,一个是度规张量,一个是线性变换。

一个线性变换是一个二阶混变张量,

,它可以将一个矢量映射到一个矢量。自行证明
是一个矢量。

要讨论度规就要默认我们的空间里又配备上了(赝)内积结构

了,考虑
上的不变长度例如
,在曲线坐标下,他就是
, 其中我们利用了
,其中
,因而度规张量
是一个对称张量,请自行验证,这样定义的度规张量却是满足张量的变换规律。当然如果反着来定义,先钦定一个度规张量,然后定义一个内积结构,这个内积结构不妨就写作
.

有了度规张量,我们相当于定义了矢量对矢量的运算,也就联系了矢量如何对应上对偶矢量,i.e利用

,我们就有
. 将上式子视为变换,接下来,我们可以定义这个变换的逆变换
,可以通过定义证明
这个张量是一个二阶逆变张量, 且由于对偶矢量基作用在矢量基上的性质,
.有了度规张量我们也能看梯度矢量了,我们想构造
,进而几步思考我们就可以得到
.,这样,我们就在度规张量的帮助下定义了带度规的grad.

(外)n-形式

讨论完了张量运算,我们考虑一类特殊的张量,n-形式,它们在几何上有更加重要的地位。

我们首先定义外积,考虑两个对偶矢量,或者1-形式,

,他们的外积运算定义为
。这样的一个反对称协变二阶张量叫做(外)2-形式。更加一般的2-形式可以写作
。由此推广到反对称协变p阶张量就是p-形式,这里的反对称是指的,以p个矢量为宗量的p-形式,对每一个位置的交换,值都会给出一个负号。

我们以

作为例子:按照定义,对于不同的
.

中一般的2-形式可以写作

3-形式可以写作

我们可以用行列式的行列交换性质轻松的定义出p-形式对矢量的左右.

我们可以补充定义p-形式和q-形式之间的外积,运算规则就是使得外积拥有结合律,并依次展开,例如:

其中

读者可以自行使用行列式证明,p-形式和q-形式在外积前后交换,满足规则

外微分

我们知道,

,即使是
是矢量分量,
也不一定是一个张量的分量. 定义外微分,就是要定义一个p-形式到p+1-形式的运算,我们作出如下定义:

这个定义在

立刻可以得到我们关于多变量微积分的一些认识,例如:

,
,

显然有

,grad的定义已经给出,我们后面会给出curl和div的定义.

一个有用的公式是

推前和拉回

考虑映射

,其上两个曲线坐标分别是
,因此
可以用n个函数
描述. 有了这个映射关系,在此基础上,我们来定义推前和拉回.

现在来考虑推前. 考虑

上的一个矢量
,这个矢量一定都与一个参数曲线的速度对应,例如
处的速度:
.基于此,我们可以定义矢量的在
的推前,利用所谓的“
的微分”,
,他作用在矢量
就给出了
时候
的速度
,用表达式就是:

因此,

不妨验证,这样定义的推前作用在矢量基上就是链式法则:

对于一个定义在

点上的p-形式
, 我们定义
的拉回
是一个定义在原像空间
的p-形式,满足:

不妨验证,这样的定义的拉回作用在对偶矢量基上就是链式法则:

上面拉回即使对于不是外形式的协变张量也能够定义.

拉回有一些重要的关系,例如

.

利用拉回的上面的性质,不难验证:

积分

我们现在可以开始想办法定义p-形式的积分了.

我们先考虑一个特例,看看

,以及
上的一个1-形式

定义

这样就可以对应上我们以及学过的积分定理了.

有了上面的直觉我们定义面积分,甚至定义任意流形上的积分都是很简单的.

例如考虑

,
,以及
上的一个2-形式

定义

,这个时候上面的拉回公式就起作用了,考虑其中的一个分量:

因此:

以后推广到微分流形上,也有

,
是一个奇异p-多面体, D是
上的一个突-k多面体.

一个重要的、联系外微分和如上定义的积分的重要公式是斯托克斯公式,也叫做牛顿-莱布尼茨-高斯-格林-奥斯特-斯托克斯-庞加莱公式,通常也被认为是世界上最美的公式:

,其中,
是一个p维的曲面,有一个
维可定向的边界
.

电动力学

我们现在来用新语言来描述平直空间

的电动力学, 其中时间变量t为一个参数.

电场强度E是和力以及功直接相关的一个量,由于涉及线积分,因此我们考虑他对应的一个1-形式:

, 功就由它的积分给出
.

电场D是进入高斯定理和高斯定理有关的一个量,由于涉及面积分,因此我们考虑他对应的一个2-形式:

,他的积分就给出
,
是一个标量.

磁场强度B是电场强度的线积分有关的一个量,按照法拉第定律,电场强度的微分给出了磁场强度,因此对应一个二形式:

,磁场本身满足散度定律:
并以法拉第定律和
联系:

磁场H是一个和电流密度的变换有关的,电流密度的面积分和电荷标量的速率有关因而是一个2-形式

, 因此磁场对应的是1-形式:
,由安培-麦克斯韦定律我们知道:

因此利用斯托克斯定理:
.

在没有定义任意流形的微分形式之前,我们最远也就是走到这里了. 我们看到电动力学还是非常的复杂。但是随后在进入了民科夫斯基空间上定义微分形式之后,电动力学会变得非常简单和自然。

内积

我们还缺少一种运算。通过函数作用,我们有1-形式和矢量之间的内积,我们还通过通过度规张量定义了两个矢量之间或者两个1-形式之间的内积. 但是在电动力学中,磁场

是用一个2-形式表示,而电场、力都是1-形式,而洛伦兹公式
,问号处是速度矢量的一个函数,作用在磁场2-形式
上。同时,在麦克斯韦理论中E和D,H和B之间是有联系的。因此,将一个矢量作用在一个
-形式上得到一个p-1形式就是为我们需要的, 他有着内积的推广的意义.

我们定义

和p-形式
的内积
为一个p-1形式,他对于矢量对
的作用为:

很显然,一个矢量对一个1-形式会得到标量0-形式:

具有扩展的内积定义.

容易验证

, 不难推广:

我们现在可以写出洛伦兹力公式了:

,但是为什么
中外积的推广呢?且看下节体形式。

体形式

我们还没能列入一些关键的事情,例如我们如何理解通常微积分中对一个0-形式的体积分

?特殊的,当
我们得到的是区域
的体积,很显然,
应当是一个k-形式. 体积是一个度量性质,很显然要和度规有关了. 我们如果默认
,在极坐标就有
,我们定义:

,就可以了。

另外我们没能列入的,例如面积形式,无非是用矢量

和体形式内积得到:

并以此类推。

有了体形式,我们还可以定义对矢量场的散度:(区别于对1-形式)

另外,注意到在

中有一类非常特殊的运算,那就是矢量的叉积
,而我们已经知道了,2-形式
有关,如何能够从
定义一个1-形式呢?

一个办法是定义1-形式

回到洛伦兹力公式为什么可以写作

的问题,我们只需定义
就会得到自洽的叉乘结果了.

霍奇算符和余微分

我们已经提到了div和grad,下面我们想要去定义curl,在欧空间中我们去定义Hodge算符*:

,

即*能把一个p-形式映射到n-p形式上. 我们考虑在

上的直角坐标系演示如何拿到hodge算符的具体表达式:

很显然

,以及

对于一形式

刚好给出了叉积!而
给出了div.我们不妨就将它定义成对对1-形式的div(而非对应的矢量)。

考虑1-形式

,
成为一个2-形式,而
返回了一个1形式,并带有微分算符,不难验证,它正是作为curl的推广,新定义的curl作用一个1-形式返回一个1-形式.

我们可以通过矢量内积将p形式变换到p-1形式,并和度规无关。而现在有了霍奇算符*,我们又可以定义另外一种重要的、和度规有关的算符,余微分,将p形式变换到p-1形式:

中不难验证
.

总结一下,有了余微分和hodge算符这两个用体形式定义出来的算符,我们有

利用这些关系,我们可以计算一系列复杂的算符组合,例如

其对应的矢量运算(利用度规交换过来)法则正是:

(为了区别于对偶矢量不是用grad div curl)

结束语

我们很容易继续将欧空间上定义的事情继续推广到任意的微分流形,其中有一些定义已经是标准的了,另一些需要一些修改. 我们下一节来好好的讨论一下. 随后我们将会给出一些微分形式的应用,然后我们开始用学习到的、几何的语言,来重新审视哈密顿力学本身是否具有一些几何结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值