为了进一步讨论曲面、曲线上的(含约束)力学,或者引入更加复杂的力学结构的时候,仅仅只有多变量微积分(
在这里我们会使用非常物理的语言来避免啰嗦的论证;某些定理我们会基于直觉给出,我们在这个部分选择相信数学家的能力。
我们这一节作为力学进阶版,首先来复习矢量微积分。内容主要来自Frankel, The geometry of Physics: An Introduction,少量来自物理学中的几何方法,冯承天、余扬政。
我们列出一个大纲:1、我们有两种矢量,一个矢量是作为标量函数线性微分算符定义的,另一种是这样定义的矢量空间的对偶空间里的元素,因此是作为矢量的泛函存在的;我们现在有了矢量对标量函数的作用,对偶矢量和矢量的作用。2、我们通过定义张量积构造了张量,并且讨论了两种重要的二阶张量,一个是能将矢量映射为矢量的线性变换,另一个是用来定义矢量对矢量作用的度规张量3、我们讨论一类非常特殊的张量,全反对称协变张量,即p-形式. 我们发现
矢量
我们将矢量(逆变矢量,切矢量)定义为标量函数的某种一阶微分算符。简单的来说,我们考虑
对偶矢量
我们来考虑对偶矢量(协变矢量,1-形式)。线性代数中对偶向量空间
爱因斯坦求和约定
接下来我们将默认使用爱因斯坦求和约定,i.e,对相同的上指标和下指标自动求和. 按照这个规则,一个逆变矢量作用在矢量上,自动给出
请自行验证,在坐标变换下
张量积
我们接下来考虑定义张量积,来诱导出更多的结构。考虑两个协变矢量的张量积定义为矢量的有序数对
请自行验证,在坐标变换下,张量的逆变指标按照逆变规则变化,协变指标按照协变规则变化。
两类特殊的二阶张量:度规、线性变换
我们接下来来讨论两类特殊的二阶张量,一个是度规张量,一个是线性变换。
一个线性变换是一个二阶混变张量,
要讨论度规就要默认我们的空间里又配备上了(赝)内积结构
有了度规张量,我们相当于定义了矢量对矢量的运算,也就联系了矢量如何对应上对偶矢量,i.e利用
(外)n-形式
讨论完了张量运算,我们考虑一类特殊的张量,n-形式,它们在几何上有更加重要的地位。
我们首先定义外积,考虑两个对偶矢量,或者1-形式,
我们以
3-形式可以写作
我们可以用行列式的行列交换性质轻松的定义出p-形式对矢量的左右.
我们可以补充定义p-形式和q-形式之间的外积,运算规则就是使得外积拥有结合律,并依次展开,例如:
其中
读者可以自行使用行列式证明,p-形式和q-形式在外积前后交换,满足规则
外微分
我们知道,
这个定义在
显然有
一个有用的公式是
推前和拉回
考虑映射
现在来考虑推前. 考虑
不妨验证,这样定义的推前作用在矢量基上就是链式法则:
对于一个定义在
不妨验证,这样的定义的拉回作用在对偶矢量基上就是链式法则:
上面拉回即使对于不是外形式的协变张量也能够定义.
拉回有一些重要的关系,例如
利用拉回的上面的性质,不难验证:
积分
我们现在可以开始想办法定义p-形式的积分了.
我们先考虑一个特例,看看
定义
有了上面的直觉我们定义面积分,甚至定义任意流形上的积分都是很简单的.
例如考虑
定义
因此:
以后推广到微分流形上,也有
一个重要的、联系外微分和如上定义的积分的重要公式是斯托克斯公式,也叫做牛顿-莱布尼茨-高斯-格林-奥斯特-斯托克斯-庞加莱公式,通常也被认为是世界上最美的公式:
电动力学
我们现在来用新语言来描述平直空间
电场强度E是和力以及功直接相关的一个量,由于涉及线积分,因此我们考虑他对应的一个1-形式:
电场D是进入高斯定理和高斯定理有关的一个量,由于涉及面积分,因此我们考虑他对应的一个2-形式:
磁场强度B是电场强度的线积分有关的一个量,按照法拉第定律,电场强度的微分给出了磁场强度,因此对应一个二形式:
磁场H是一个和电流密度的变换有关的,电流密度的面积分和电荷标量的速率有关因而是一个2-形式
在没有定义任意流形的微分形式之前,我们最远也就是走到这里了. 我们看到电动力学还是非常的复杂。但是随后在进入了民科夫斯基空间上定义微分形式之后,电动力学会变得非常简单和自然。
内积
我们还缺少一种运算。通过函数作用,我们有1-形式和矢量之间的内积,我们还通过通过度规张量定义了两个矢量之间或者两个1-形式之间的内积. 但是在电动力学中,磁场
我们定义
很显然,一个矢量对一个1-形式会得到标量0-形式:
容易验证
我们现在可以写出洛伦兹力公式了:
体形式
我们还没能列入一些关键的事情,例如我们如何理解通常微积分中对一个0-形式的体积分
另外我们没能列入的,例如面积形式,无非是用矢量
有了体形式,我们还可以定义对矢量场的散度:(区别于对1-形式)
另外,注意到在
一个办法是定义1-形式
回到洛伦兹力公式为什么可以写作
霍奇算符和余微分
我们已经提到了div和grad,下面我们想要去定义curl,在欧空间中我们去定义Hodge算符*:
即*能把一个p-形式映射到n-p形式上. 我们考虑在
很显然
对于一形式
考虑1-形式
我们可以通过矢量内积将p形式变换到p-1形式,并和度规无关。而现在有了霍奇算符*,我们又可以定义另外一种重要的、和度规有关的算符,余微分,将p形式变换到p-1形式:
在
总结一下,有了余微分和hodge算符这两个用体形式定义出来的算符,我们有
利用这些关系,我们可以计算一系列复杂的算符组合,例如
其对应的矢量运算(利用度规交换过来)法则正是:
结束语
我们很容易继续将欧空间上定义的事情继续推广到任意的微分流形,其中有一些定义已经是标准的了,另一些需要一些修改. 我们下一节来好好的讨论一下. 随后我们将会给出一些微分形式的应用,然后我们开始用学习到的、几何的语言,来重新审视哈密顿力学本身是否具有一些几何结构。