摘要:本文围绕 C# 与 HALCON 结合应用,深入探讨vector_to_hom_mat2d算子在机器人手眼标定(Eye-to-Hand)中的实践。以机械臂抓取流水线零件为案例,详述通过九点标定法获取图像与机械坐标对应关系,生成仿射矩阵,实现坐标转换,并借助 C# 经 TCP/IP 将结果发送至机器人控制器的技术流程。同时阐述性能优化、异常处理及跨平台集成方法,为机器人视觉定位与自动化抓取提供完整解决方案。
文章目录
【C# + HALCON 机器视觉】HALCON经典算子:仿射变换矩阵生成(vector_to_hom_mat2d
)
关键词:C#;HALCON;vector_to_hom_mat2d;手眼标定;仿射变换矩阵;机器人视觉;TCP/IP 通信
一、引言
在现代智能制造领域,机器人技术的应用日益广泛,特别是在自动化生产线中,机器人需要准确地识别和抓取目标物体。然而,由于相机坐标系与机器人坐标系之间存在位置和角度的差异,机器人无法直接根据相机获取的图像信息进行操作,因此需要进行手眼标定,建立两个坐标系之间的转换关系。
HALCON作为一款功能强大的机器视觉软件库,提供了丰富的标定和坐标转换工具。其中,仿射变换矩阵生成算子vector_to_hom_mat2d
是HALCON中用于生成二维仿射变换矩阵的核心算子之一,能够根据已知的点对对应关系,计算出从一个坐标系到另一个坐标系的变换矩阵。
本文将详细介绍仿射变换矩阵生成算子vector_to_hom_mat2d
的原理、应用场景,并结合实际案例,展示如何使用C#集成HALCON来实现机器人手眼标定(Eye-to-Hand),同时给出性能优化、异常处理和跨平台集成的相关建议和实现方法。
二、仿射变换矩阵生成(vector_to_hom_mat2d
)算子原理
2.1 仿射变换基础
仿射变换是一种二维坐标变换,它保持了直线的平行性,但不一定保持长度和角度。仿射变换可以表示为平移、旋转、缩放和剪切的组合。在二维空间中,仿射变换可以用一个3×3的齐次变换矩阵来表示:
$$
\begin{bmatrix}
x’ \
y’ \
1
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{12} & t_x \
a_{21} & a_{22} & t_y \
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \
y \
1
\end{bmatrix}
$$
其中, ( x , y ) (x, y) (x,y)是原始坐标, ( x ′ , y ′ ) (x', y') (x′,y′)是变换后的坐标, a 11 , a 12 , a 21 , a 22 a_{11}, a_{12}, a_{21}, a_{22} a11,a12,a21,a22表示旋转、缩放和剪切的参数, t x t_x tx和 t y t_y ty表示平移参数。
2.2 vector_to_hom_mat2d
算子
vector_to_hom_mat2d
是HALCON中用于根据点对对应关系生成仿射变换矩阵的算子,其语法如下:
vector_to_hom_mat2d(Row1, Col1, Row2, Col2 : HomMat2D : : )
参数说明:
Row1
:源坐标系中点的行坐标数组。Col1
:源坐标系中点的列坐标数组。Row2
:目标坐标系中点的行坐标数组。Col2
:目标坐标系中点的列坐标数组。HomMat2D
:输出的仿射变换矩阵。
vector_to_hom_mat2d
算子的工作原理是基于最小二乘法,通过求解方程组来计算最优的仿射变换矩阵参数。为了唯一确定仿射变换矩阵,至少需要3个不共线的点对。
2.3 仿射变换矩阵的应用
仿射变换矩阵在机器视觉和机器人领域有着广泛的应用,主要包括以下几个方面:
- 手眼标定:建立相机坐标系与机器人坐标系之间的转换关系。
- 图像配准:将不同视角或不同时间获取的图像进行对齐。
- 物体定位与姿态估计:根据已知的点对对应关系,计算物体的位置和姿态。
- 坐标转换:将图像坐标转换为世界坐标,或将一个坐标系中的坐标转换到另一个坐标系中。
三、应用场景:机器人手眼标定(Eye-to-Hand)
3.1 手眼标定的概念
手眼标定是机器人视觉中的一个重要问题,它的目的是确定相机与机器人末端执行器(如机械臂)之间的相对位置和姿态关系。根据相机的安装方式,手眼标定可以分为两种类型:
- Eye-to-Hand:相机固定在工作空间中,不随机械臂移动。
- Eye-in-Hand:相机安装在机械臂末端,随机械臂一起移动。
在Eye-to-Hand标定中,相机坐标系与机器人基坐标系之间的关系需要通过标定来确定。这样,机器人就可以根据相机获取的图像信息,准确地计算出目标物体在机器人坐标系中的位置,从而实现精确抓取。
3.2 九点标定法
九点标定法是一种常用的手眼标定方法,它通过在工作空间中选择9个已知点,分别获取这些点在相机坐标系和机器人坐标系中的坐标,然后利用这些点对对应关系计算仿射变换矩阵。
九点标定法的步骤如下:
- 在工作空间中选择9个分布均匀的点,这些点的位置应该能够覆盖机器人的工作范围。
- 控制机器人依次移动到这9个点的位置,并记录每个点在机器人坐标系中的坐标。
- 使用相机拍摄包含这9个点的图像,并在图像中识别出这些点的位置,记录它们在相机坐标系中的坐标。
- 使用
vector_to_hom_mat2d
算子根据这9个点对的对应关系,计算仿射变换矩阵。 - 使用计算得到的仿射变换矩阵,将相机坐标系中的任意点转换到机器人坐标系中。
四、案例:机械臂抓取流水线上随机摆放的零件
4.1 案例需求分析
本案例的目标是实现机械臂对流水线上随机摆放零件的自动抓取,具体步骤如下:
- 使用相机拍摄流水线上的零件图像。
- 在图像中识别出零件的位置和姿态。
- 进行手眼标定,建立相机坐标系与机器人坐标系之间的转换关系。
- 将零件在相机坐标系中的位置转换到机器人坐标系中。
- 通过TCP/IP将转换后的坐标发送至机器人控制器。
- 机器人根据接收到的坐标调整抓取路径,实现对零件的准确抓取。
4.2 实操流程
4.2.1 环境准备
- 安装HALCON:从HALCON官方网站下载并安装HALCON开发环境。
- 安装Visual Studio:安装Visual Studio开发工具,并创建一个C#控制台应用程序项目。
- 配置HALCON与C#集成:在Visual Studio项目中添加HALCON的引用,具体步骤如下:
- 打开Visual Studio项目,右键单击项目名称,选择“添加” -> “引用”。
- 在“引用管理器”中,点击“浏览”按钮,找到HALCON安装目录下的
HalconDotNet.dll
文件,添加该引用。
- 准备机器人系统:确保机器人系统支持TCP/IP通信,并获取机器人控制器的IP地址和端口号。
4.2.2 代码实现
以下是实现机器人手眼标定和零件抓取的完整C#代码:
using HalconDotNet;
using System;
using System.Net.Sockets;
using System.Text;
namespace RobotHandEyeCalibration
{
class Program
{
// 机器人控制器IP地址和端口号
private static string robotIp = "192.168.1.100";
private static int robotPort = 5000;
static void Main(string[] args)
{
try
{
// 初始化HALCON窗口
HOperatorSet.GenEmptyObj(out HObject emptyObj);
HOperatorSet.OpenWindow(0, 0, 800, 600, 0,