最近工作中遇到一个问题,需要将点从球面投影到平面上。现将解决问题的过程记录下来,以备查阅。
1.局部投影
如果是将局部球面投影成平面,可以直接投影。常用的投影方式有两种,第一是中心投影,即从球心O发出射线经过球面上的点P并与投影面相交于P',P'即是点P的投影。第二是平行投影,如果投影面与球面相切于点Q,则用沿OQ的一束射线照射投影面,相应的球面上的点在投影面上也会有对应点。可以证明平行投影的变形比中心投影小,所以下面的投影采用平行投影。
局部投影的关键在于确定投影坐标系。
如上图,选定了球面上的投影原点(map origin)后,局部坐标系可以按三个方向确定:(1)z轴:map origin 指向球心(图中没有画图来);(2)y轴:该点在原坐标系中沿经线方向的切线;(3)x轴:按与z轴、y轴两两垂直的关系,求出x轴。
下面直接给出结论:如果在单位球面(球心坐标(0,0,0),球径r=1)上一点P的经、纬度分别为
和
,则该点处的局部参考系为
,
,
.可以验证上述
轴互相正交