定义 2.2
如果函数 w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内可微, 则称 f ( z ) f(z) f(z) 为区域 D D D内的解析函数, 或称 f ( z ) f(z) f(z) 在区域 D D D 内解析.
推论 2.3 (可微的充分条件)
设函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+i v(x, y) f(z)=u(x,y)+iv(x,y) 在区域 D D D内有定义, 则 f ( z ) f(z) f(z) 在 D D D 内一点 z = x + i y z=x+\mathrm{i} y z=x+iy 可微的充分条件是
- u x , u y , v x , v y u_{x}, u_{y}, v_{x}, v_{y} ux,uy,vx,vy 在点 ( x , y ) (x, y) (x,y) 连续.
- u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在点 ( x , y ) (x, y) (x,y) 满足 C. - R. 方程.
定理 2.2 (可微的充要条件)
设函数
f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y)
在区域 D D D 内有定义, 则 f ( z ) f(z) f(z) 在 D D D 内一点 z = x + i y z=x+\mathrm{i} y z=x+iy可微的充要条件是
- 二元函数 u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在点 ( x , y ) (x, y) (x,y) 可微.
- u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在点 ( x , y ) (x, y) (x,y) 满足 C. - R. 方程.
上述条件满足时, f ( z ) f(z) f(z) 在点 z = x + i y z=x+\mathrm{i} y z=x+iy的导数可以表示为下列形式之一【复变函数求导数的公式】:
f ′ ( z ) = ∂ u ∂ x + i ∂ v ∂ x = ∂ v ∂ y − i ∂ u ∂ y = ∂ u ∂ x − i ∂ u ∂ y = ∂ v ∂ y + i ∂ v ∂ x ( 2.7 ) \color{red}{ \begin{aligned} f^{\prime}(z)&=\cfrac{\partial u}{\partial x}+\mathrm{i} \cfrac{\partial v}{\partial x}\\ &=\cfrac{\partial v}{\partial y}-\mathrm{i} \cfrac{\partial u}{\partial y}\\ &=\cfrac{\partial u}{\partial x}-\mathrm{i} \cfrac{\partial u}{\partial y}\\ &=\cfrac{\partial v}{\partial y}+\mathrm{i} \cfrac{\partial v}{\partial x} \end{aligned} \quad\quad\quad\quad(2.7) } f′(z)=∂x∂u+i∂x∂v=∂y∂v−i∂y∂u=∂x∂u−i∂y∂u=∂y∂v+i∂x∂v(2.7)
由定义 2.2 及推论 2.3 , 我们有
定理 2.5 (解析的充分条件)
函数
f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y)
在区域 D D D内解析的充分条件是
- u x , u y , v x , v y u_{x}, u_{y}, v_{x}, v_{y} ux,uy,vx,vy 在 D D D 内连续.
- u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,