复变函数论2-解析函数1-5-解析条件2:复变函数解析的充分条件【①uₓ,uᵧ,vₓ,vᵧ在区域D内连续;②u(x,y),v(x,y) 在D内满足C-R方程】

本文深入探讨了复变函数的解析条件,包括充分条件和充要条件。通过多个定理和例子,如函数f(z)=x^2+y^2在z=0处的特殊情况,展示了C-R方程在判断函数可微性和解析性中的关键作用。同时,举例说明了函数在某些特定条件下可能只在特定点或直线上可微,但不解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 2.2

如果函数 w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内可微, 则称 f ( z ) f(z) f(z)区域 D D D内的解析函数, 或称 f ( z ) f(z) f(z) 在区域 D D D 内解析.

推论 2.3 (可微的充分条件)

设函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+i v(x, y) f(z)=u(x,y)+iv(x,y) 在区域 D D D内有定义, 则 f ( z ) f(z) f(z) D D D 内一点 z = x + i y z=x+\mathrm{i} y z=x+iy 可微的充分条件是

  1. u x , u y , v x , v y u_{x}, u_{y}, v_{x}, v_{y} ux,uy,vx,vy 在点 ( x , y ) (x, y) (x,y) 连续.
  2. u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在点 ( x , y ) (x, y) (x,y) 满足 C. - R. 方程.

定理 2.2 (可微的充要条件)

设函数

f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y)

在区域 D D D 内有定义, 则 f ( z ) f(z) f(z) D D D 内一点 z = x + i y z=x+\mathrm{i} y z=x+iy可微的充要条件是

  1. 二元函数 u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在点 ( x , y ) (x, y) (x,y) 可微.
  2. u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,y),v(x,y) 在点 ( x , y ) (x, y) (x,y) 满足 C. - R. 方程.

上述条件满足时, f ( z ) f(z) f(z) 在点 z = x + i y z=x+\mathrm{i} y z=x+iy的导数可以表示为下列形式之一【复变函数求导数的公式】:

f ′ ( z ) = ∂ u ∂ x + i ∂ v ∂ x = ∂ v ∂ y − i ∂ u ∂ y = ∂ u ∂ x − i ∂ u ∂ y = ∂ v ∂ y + i ∂ v ∂ x ( 2.7 ) \color{red}{ \begin{aligned} f^{\prime}(z)&=\cfrac{\partial u}{\partial x}+\mathrm{i} \cfrac{\partial v}{\partial x}\\ &=\cfrac{\partial v}{\partial y}-\mathrm{i} \cfrac{\partial u}{\partial y}\\ &=\cfrac{\partial u}{\partial x}-\mathrm{i} \cfrac{\partial u}{\partial y}\\ &=\cfrac{\partial v}{\partial y}+\mathrm{i} \cfrac{\partial v}{\partial x} \end{aligned} \quad\quad\quad\quad(2.7) } f(z)=xu+ixv=yviyu=xuiyu=yv+ixv(2.7)


由定义 2.2 及推论 2.3 , 我们有


定理 2.5 (解析的充分条件)

函数

f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y)

在区域 D D D内解析的充分条件是

  1. u x , u y , v x , v y u_{x}, u_{y}, v_{x}, v_{y} ux,uy,vx,vy D D D 内连续.
  2. u ( x , y ) , v ( x , y ) u(x, y), v(x, y) u(x,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值