复变函数论2-解析函数1-2-柯西-黎曼(C-R)方程6:可微的充分条件【①偏导数uₓ,uᵧ,vₓ,vᵧ在点(x,y)连续;②u(x,y),v(x,y) 在点(x,y)满足C-R方程】

本文详细探讨了复变函数可微性的条件,尤其是柯西-黎曼(C-R)方程在判断函数可微性和解析性中的重要作用。通过定理和例题,阐述了C-R方程作为函数可微的必要和充分条件,以及解析函数的充分条件,展示了如何利用这些条件来判断函数在特定点或区域的可微性和解析性。
摘要由CSDN通过智能技术生成

假设

w = f ( z ) = u ( x , y ) + i v ( x , y ) w=f(z)=u(x, y)+\mathrm{i} v(x, y) w=f(z)=u(x,y)+iv(x,y)

是复变元 z = x + i y z=x+\mathrm{i} y z=x+iy 的一个定义在区域 D D D 内的函数.

当二元实函数 u ( x , y ) u(x, y) u(x,y) v ( x , y ) v(x, y) v(x,y)给定时, 此函数也就完全确定.

一般说来, 如果函数 u ( x , y ) u(x, y) u(x,y) v ( x , y ) v(x, y) v(x,y) 互相独立, 即使函数 u ( x , y ) u(x, y) u(x,y) v ( x , y ) v(x, y) v(x,y) x x x y y y 所有偏导数都存在, 函数 f ( z ) f(z) f(z) 通常也是不可微的.

例如, w = z ˉ = x − i y w=\bar{z}=x-\mathrm{i} y w=zˉ=xiy 处处连续, 并且 u = x , v = − y u=x, v=-y u=x,v=y x x x y y y的一切偏导数都存在且连续,但由例 2.1 知, w = z ˉ w=\bar{z} w=zˉ却是一个处处不可微的函数.

因此, 如果函数 f ( z ) f(z) f(z) 是可微的, 它的实部 u ( x , y ) u(x, y) u(x,y) 与虚部 v ( x , y ) v(x, y) v(x,y)应当不是互相独立的,而必须适合一定的条件, 下面我们就来探讨这种条件.

f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y) 在一点 z = x + i y z=x+\mathrm{i} y z=x+iy 可微,而且设

lim ⁡ Δ z → 0 f ( z + Δ z ) − f ( z ) Δ z = f ′ ( z ) ( 2.3 ) \lim \limits_{\Delta z \rightarrow 0} \cfrac{f(z+\Delta z)-f(z)}{\Delta z}=f^{\prime}(z) \quad\quad(2.3) Δz0limΔzf(z+Δz)f(z)=f(z)(2.3)

又设 Δ z = Δ x + i Δ y , f ( z + Δ z ) − f ( z ) = Δ u + i Δ v \Delta z=\Delta x+\mathrm{i} \Delta y, f(z+\Delta z)-f(z)=\Delta u+\mathrm{i} \Delta v Δz=Δx+iΔy,f(z+Δz)f(z)=Δu+iΔv,其中

Δ u = u ( x + Δ x , y + Δ y ) − u ( x , y ) , Δ v = v ( x + Δ x , y + Δ y ) − v ( x , y ) . \begin{array}{l} \Delta u=u(x+\Delta x, y+\Delta y)-u(x, y), \\ \Delta v=v(x+\Delta x, y+\Delta y)-v(x, y) . \end{array} Δu=u(x+Δx,y+Δy)u(x,y),Δv=v(x+Δx,y+Δy)v(x,y).

(2.3) 变为

lim ⁡ Δ x → 0 Δ y → 0 Δ u + i Δ v Δ x + i Δ y = f ′ ( z ) ( 2.4 ) \lim \limits_{\substack{\Delta x \rightarrow 0 \\ \Delta y \rightarrow 0}} \cfrac{\Delta u+\mathrm{i} \Delta v}{\Delta x+\mathrm{i} \Delta y}=f^{\prime}(z) \quad\quad(2.4) Δx0Δy0limΔx+iΔyΔu+iΔv=f(z)(2.4)
在这里插入图片描述

因为 Δ z = Δ x + i Δ y \Delta z=\Delta x+\mathrm{i} \Delta y Δz=Δx+iΔy 无论按什么方式趋于零时,(2.4) 总是成立的. 先设 Δ y = 0 \Delta y=0 Δy=0, 令 Δ x → 0 \Delta x \rightarrow 0 Δx0, 即变点 z + Δ z z+\Delta z z+Δz 沿平行于实轴的方向趋于点 z z z (图 2.1), 此时 (2.4) 成为

lim ⁡ Δ x → 0 Δ u Δ x + i lim ⁡ Δ x → 0 Δ v Δ x = f ′ ( z ) , \lim \limits_{\Delta x \rightarrow 0} \cfrac{\Delta u}{\Delta x}+\mathrm{i} \lim \limits_{\Delta x \rightarrow 0} \cfrac{\Delta v}{\Delta x}=f^{\prime}(z), Δx0limΔxΔu+iΔx0limΔxΔv=f(z),

于是知 ∂ u ∂ x , ∂ v ∂ x \cfrac{\partial u}{\partial x}, \cfrac{\partial v}{\partial x} xu,xv必然存在,且有

∂ u ∂ x + i ∂ v ∂ x = f ′ ( z ) = lim ⁡ Δ y = 0 Δ x → 0 Δ w Δ z = lim ⁡ y , y 0 f ( z ) − f ( z 0 ) z − z 0 ( 2.5 ) \begin{aligned} \cfrac{\partial u}{\partial x}+\mathrm{i} \cfrac{\partial v}{\partial x} & =f^{\prime}(z) \\ & =\lim \limits_{\substack{\Delta y=0 \\ \Delta x \rightarrow 0}} \cfrac{\Delta w}{\Delta z}=\lim \limits_{\substack{y \\ , y_{0}}} \cfrac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \quad\quad(2.5) \end{aligned} xu+ixv=f(z)=Δy=0Δx0limΔzΔw=y,y0limzz0f(z)f(z0)(2.5)

同样, 设 Δ x = 0 \Delta x=0 Δx=0, 令 Δ y → 0 \Delta y \rightarrow 0 Δy0, 即变点 z + Δ z z+\Delta z z+Δz沿平行于虚轴的方向趋于点 z z z (图 2.1), 此时 (2.4) 成为

− i lim ⁡ Δ y → 0 Δ u Δ y + lim ⁡ Δ y → 0 Δ v Δ y = f ′ ( z ) , -\mathrm{i} \lim \limits_{\Delta y \rightarrow 0} \cfrac{\Delta u}{\Delta y}+\lim \limits_{\Delta y \rightarrow 0} \cfrac{\Delta v}{\Delta y}=f^{\prime}(z), iΔy0limΔyΔu+Δy0limΔyΔv=f(z),

故知 ∂ u ∂ y , ∂ v ∂ y \cfrac{\partial u}{\partial y}, \cfrac{\partial v}{\partial y} yu,yv亦必存在, 且有

− i ∂ u ∂ y + ∂ v ∂ y = f ′ ( z ) = lim ⁡ Δ x = 0 Δ y → 0 Δ w Δ z = lim ⁡ x = x 0 y = y 0 f ( z ) − f ( z 0 ) z − z 0 ( 2.6 ) \begin{aligned} -\mathrm{i} \cfrac{\partial u}{\partial y}+\cfrac{\partial v}{\partial y} & =f^{\prime}(z) \\ & =\lim \limits_{\substack{\Delta x=0 \\ \Delta y \rightarrow 0}} \cfrac{\Delta w}{\Delta z}=\lim \limits_{\substack{x=x_{0} \\ y=y_{0}}} \cfrac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \quad\quad(2.6) \end{aligned} iyu+yv=f(z)=Δx=0Δy0limΔzΔw=x=x0y=y0limzz0f(z)f(z0)(2.6)

比较 (2.5) 及 (2.6) 得出 f ( z ) f(z) f(z)可微的条件为:

∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \color{red}{\cfrac{\partial u}{\partial x}=\cfrac{\partial v}{\partial y}, \quad \cfrac{\partial u}{\partial y}=-\cfrac{\partial v}{\partial x}} xu=yv,yu=xv

这是关于 u u u v v v 的偏微分方程组, 称为柯西-黎曼方程 (简称 C. - R.方程, 简记为 C. - R.).

灵活应用 ( 2.5 ) (2.5) (2.5) ( 2.6 ) (2.6) (2.6) 这两个公式, 计算 f ( z ) f(z) f(z) 的实部 u ( x , y ) u(x, y) u(x,y)及虚部 v ( x , y ) v(x, y) v(x,y)在点 ( x 0 , y 0 ) \left(x_{0}, y_{0}\right) (x0,y0) 的偏导数, 是比较方便的.

总结以上探讨,即得下述定理:

定理 2.1 (可微的必要条件)

设函数

f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x, y)+\mathrm{i} v(x, y) f(z)=u(x,y)+iv(x,y)

在区域 D D D 内有定义,且在 D D D 内一点 z = x + i y z=x+\mathrm{i} y z=x+iy 可微,则必有

  1. 偏导数 u x , u y , v x , v y u_{x}, u_{y}, v_{x}, v_{y} ux,u
微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码 微信小程序毕业设计期末大作业项目源码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值