string 包含_STRING数据库在网络药理学研究中的应用详解

STRING数据库由欧洲分子生物实验室开发,用于研究基因间的功能关联。本文详细介绍如何利用STRING进行蛋白名称转换、构建蛋白相互作用网络及功能富集分析等功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STRING (search tool for recurring instances of neighbouring genes)是欧洲分子生物实验室(European Molecular Biology Laboratory, EMBL)Peer Bork团队开发的关于基因间功能关联关系的数据库。自2000年上线以来,目前已经更新到第11版。2019年的最新版包括了共5090个物种、24,584,628个蛋白、3,123,056,667个相互作用。

在网络药理学研究中,STRING数据库通常被应用于构建靶标蛋白之间的蛋白-蛋白相互作用网络。事实上,STRING的功能非常强大,它还有更多的用途,本期将通过几个例子,详细介绍这些用法。

一、蛋白名称及ID的批量影射

例1. 将蛋白名称转化为gene symbol.

中药网络药理学研究中,大家常用的一个中药数据库是TCMSP。但是这个数据库给出的靶标信息是靶标的蛋白名称,这种一长串的英文名称在后续的网络构建、分析、可视化中有诸多不便,通常需要把它转化成gene symbol。用STRING实现批量转换的方法如下图:

粘贴蛋白名称数据、选择物种、点击搜索:

6dd8b0869f633b59fbdac55c573cc76a.png

结果下载:

bc996383177adc22ab200ae781da0ec5.png

例2. 识别一列Uniprot ID 中非人源的蛋白。

TargetNet平台预测化合物的靶标, 是将输入的化合物针对623个常用靶标进行预测,并给出预测分。但是,623个靶标中有一些不是人源蛋白。如何剔出这些靶标呢?可以将TargetNet输出的靶标的Uniprot ID粘贴到STRING,物种选择人,没有影射到的蛋白就是非人源蛋白。

粘贴Uniprot ID、选择物种、点击搜索:

dd9c5a6d3fb4be9f7bae3b7f06a5518c.png

STRING将UNIPROT ID影射到gene symbol, 没有影射到的就是非人源蛋白。

33ba759dbef42a589f24b2256305a9a6.png

二、构建多个蛋白之间的相互作用网络:

首先介绍一下STRING数据库构建的网络中边的含义。根据STRING数据库的文档介绍,数据库里面的蛋白-蛋白相互作用代表的是蛋白之间功能的关联性。STRING的数据来自整合各种生物学数据,并包含大量预测的关联性,并使用Confidence Score将不同来源数据的可靠性整合成一个可靠性分值。STRING将低可靠性、中等可靠性、高可靠性、最高可靠性的分值分别设置为0.15, 0.4, 0.7,0.9。在构建网络是,它默认的可靠性分是0.4。

STRING里边的数据来源见下图:

f02962e331d4db4f9d5d1d92ba7746fb.png

例3. 构建仅包含输入蛋白的相互作用网络。

粘贴蛋白list、选择物种、点击搜索:

7f2c5aac02ba8bfb08e2dccecdc6fda9.png

点击继续:

6bce47243a76fa6976a49b6df39ff90b.png

获得构建的网络:

5f46759d45c5b6921d685fe456b27d9d.png

下载网络:

104cc5a9e381b98ef291e00e9a9c0fc3.png

例4. 构建不仅包含输入蛋白、还包含其它与当前蛋白关联最强的蛋白的相互作用网络

在例3的结果页面,点击“More”,得到加入了更多蛋白的网络。可以继续点击“More”, 持续加入更多蛋白。点击“Less”, 会删除刚加入的蛋白。见下图:

706be249e86ef39c06332b7ef79c04e8.png

点击“Legend”, 会列出输入节点和加入的多余节点:

072441512120618f4358d1749e27bdeb.png

5c1dcf42b8625801027470c6e09a1d06.png

三、蛋白功能富集分析

STRING也可以象DAVID一样,做GO和KEGG等富集分析,而且操作更简便。

例5. 对构建的网络中的蛋白作功能富集分析。

在构建好网络的页面,点击“Analysis”,得到网络的基本拓扑指标、以及网络中蛋白的功能富集分析结果,并可以分项下载。见下图:

01d80aab61c49872824f683fd5279653.png

cea3c1594620e10df8b92ec79dac7621.png

例6. 对转录组学、蛋白组学实验结果数据作功能富集分析

通常对转录组学、蛋白组学实验结果,需要分别设定fold change, abundance等的阈值,识别出显著差异表达的基因和蛋白,再对这部分基因或蛋白进行功能富集分析。STRING第11版新上线的这个新功能,可以将整个组学结果按fold change, 或abundance,或p-value值排序输入,进行功能富集分析。输入格式是2列,第1列是蛋白名字,第2列是该蛋白对应的数值,要求按从小到大或者从大到小的顺序排列输入数据。分析的结果会告诉你是列表的顶部、底部还是两侧数据富集在相应的功能上。

输入:

a2a80dc1bcc2dcaecc780cf2b60b0b74.png

结果:将鼠标点在某个功能上,左上方会显示落在这个功能上的基因位于列表的位置,左下方显示落在这个功能上的基因位于全网络的位置。

4bddf64e3e5a3157b8d7d3d6f7067f53.png

结果下载:

71a517892b6a8a3b6819ede6ad98b533.png

本期分享到此,希望大家充分利用STRING强大的功能

参考文献:

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C.STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 Jan; 47:D607-613.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值